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Assumptions

Data Assumption: 


Model Assumption:  where 



In words, we assume that the data is drawn from a "line"  through the origin (one can always
add a bias / offset
through an additional dimension, similar to the
Perceptron). For each data point
with
features , the label  is drawn from a Gaussian with
mean  and variance . Our
task
is to estimate the slope  from the data.

How can we motivate this model using the central limit theorem?

Estimating with MLE

We are minimizing a loss function, . This
 particular loss function is also known as the squared loss or
Ordinary
Least Squares (OLS). In this form, it has a natural interpretation as the average
squared error of the prediction over the training set.
OLS can be optimized with gradient descent, Newton's
method, or in closed form.

Closed Form Solution: if  is invertible, then
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Otherwise, there is not a unique solution, and any  that is a solution of the linear equation

minimizes the objective.

Estimating with MAP

To use MAP, we will need to make an additional modeling assumption of a prior
for the weight .

With this, our MAP estimator becomes

This objective is known as Ridge Regression. It has a closed form solution
of:  where
  and
.
The solution must always exist and be unique (why?).

Summary

Ordinary Least Squares:

.
Squared loss.
No regularization.
Closed form: .

Ridge Regression:

.
Squared loss.

.
Closed form: .
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l2-regularization
w = (XXT + λI)−1XyT


