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Assumptions

=

Data Assumption: y; € R
Model Assumption: y; = W x; + €; where ¢; ~ N (0, 0?)

vy

Labels

)2
= yi|x; ~ N(wTx;,0?) = P(yi|xi,w) = \/#67 27

=

In words, we assume that the data is drawn from a "line” W x through the origin (one can always

add a bias / offset through an additional dimension, similar to the Perceptron). For each data point

with features X;, the label y is drawn from a Gaussian with mean WTXZ- and variance o2. Our

v

task is to estimate the slope W from the data. Xi Features X
How can we motivate this model using the central limit theorem?
Estimating with MLE
WMLE = argmax P(y17 P STEER) 7ynvxn|w)
w
n
= argmax H P(y;, xi|w) Because data points are independently
A =1
! n
= argmax H P(yi|xi, w)P(xi|w) Chain rule of probability
A =1
! n
= argmax H P(yi|xi, w)P(x;) x; is independent of w, we only model P(y;|x)
A =51
! n
= argmax H P(yi|xi, w) P(x;) is a constant - can be dropped
A =1
! n
= argmax log [P(yi|xi, w)] log is a monotonic function
w i—1
1" 1 (xFw-yi)?
= argmax {log < ) + log (67 27 >} Plugging in probability distribution
w =1 Voro?
1 & ) . : :
= argmax ——— Z(xz W — i) First term is a constant, and log(e?*) = 2z
i—1
1 & l
= argmin - Z(xiTw —yi)? Scale and switch to minimize
w =1

e . 1 n T )2 . . . .
We are minimizing a loss function, [(W) = - > io1(x; W —y;)”. This particular loss function is also known as the squared loss or
Ordinary Least Squares (OLS). In this form, it has a natural interpretation as the average squared error of the prediction over the training set.

OLS can be optimized with gradient descent, Newton's method, or in closed form.
Closed Form Solution: if X X T is invertible, then

w = (XXT)'Xy” where X = [x1,...,%x,] €e R"" and y = [y1,...,yn] € RP™
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Otherwise, there is not a unique solution, and any W that is a solution of the linear equation

XX"w = Xy"
minimizes the objective.
Estimating with MAP
To use MAP, we will need to make an additional modeling assumption of a prior for the weight w.
1 _xlw
P(w) = e %,

\V2orT?

With this, our MAP estimator becomes

wypap = argmax P(wW|y1,X1,...,Yn,Xn)
w

P(yla X1y ,yn,xn|w)P(w)

= argmax
gW P(ylaxla“'?yn,xn)
= argmax P(y1,X1,...,Yn,Xn|W)P(W)
= argmax H P(y;, x;|w) | P(w)
w Li=1
i n
= argmax H P(y;|x;, w)P(x;|w) | P(w)
w Li=1
i n
= argmax H P(y;|x;, w)P(x;) | P(w)
w L i=1
= argmax H P(y;|x;, w) | P(w)
w Li=1

S e

= argmax Z log P(y;|x;, w) + log P(w)

w i=1
. 1 . ( T )2 + 1 T
= argmin —— X; W— Y S oW W
gw 20_2 p 2 yl 27.2
1 n T 2 2 —0-2
— i —_ ; - ) A -
argvf,nm n 2 (x; w—u)” + A|w|l3 nT?2

This objective is known as Ridge Regression. It has a closed form solution of: W = (XXT + )\I) _1XyT, where X = [xl, ceey xn] and

Y = [Y1,- - - y Yn]- The solution must always exist and be unique (why?).
Summary
Ordinary Least Squares:

e miny, % ?:1(xiTw—yi)2.

* Squared loss.

* No regularization.

¢ Closed form: w = (XXT)71XyT.

Ridge Regression:

 ming 5 30, (xf W — i) + Al|wl[3.
® Squared loss.

e [2-regularization.

® Closed form: w = (XXT + )\I)*1XyT.



