
Illustration of categorical NB. For  dimensional data,
there exist 
 independent dice for each class. Each feature
has one die per

class. We assume training samples were generated
by rolling one
die after another. The value in dimension 
corresponds to the

outcome that was rolled with the 
die.

Illustration of multinomial NB. There are only as many dice as
classes. Each die has  sides. The value of the th
feature shows

how many times this particular side was rolled.
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Case #1: Categorical features
Feature Assumption: the th feature lies in a finite set of 
categories 
.
That is, .
Note that the case of binary features is just a specific case of this,
where . An example of such a setting may be personal data where a feature
could be marital status
(single/married) or gender or state of residence (Alabama/Alaska/Arizona/et cetera).

Model Assumption: We model  as a categorical distribution.

where
  denotes the probability of feature  having
 the value , given that the label is . Here the
constraints ensure that this is a
probability distribution.

Parameter estimation:

where  is the th feature of the th example in the training set  and  is a
smoothing parameter. By
setting  we get an MLE estimator, and
  leads to MAP. Setting  is a technique called
Laplace smoothing.

The generative model that we are assuming is that the data was
 generated by first choosing the label (e.g. "healthy person"). That
 label comes with a set of  "dice", one for each
dimension. The
generator picks each die, tosses it (independently) and fills in the feature value with
the outcome of the coin toss. So if there are  possible labels and
  dimensions we
are estimating  "dice" from the data.
However, per data point only  dice are tossed (one for each
dimension). Die  (for any label) has  possible
"sides". Of course this is not
how the data is generated in reality — but
it is a modeling assumption that we make.

Prediction: The prediction made by the categorical Naive bayes classifier is

Case #2: Multinomial Naive Bayes

If feature values represent
counts (not categories) we need to use a different model. E.g. in the text document
categorization, feature value  means that in this particular
 document  the th word in my
dictionary appears
  times. Let us consider the example of spam filtering. Imagine the
 th word is indicative
of being "spam". Then if
  means that this email is likely spam (as word 
appears 10 times in it).
And another email with  should
 be even more likely to be spam (as the spammy word appears
twice as
often). With categorical features this is not guaranteed. It could be that
 the training set does not
contain any email that contain word 
exactly 20 times. In this case you would simply get the hallucinated
smoothing values for both spam and not-spam — and the signal is lost. We
need a model that incorporates
our knowledge that features are counts —
 this will help us during estimation (you don't have to see a
training
email with exactly the same number of word occurrences) and during
inference/testing (as you will
obtain these monotonicities that one might
expect). The multinomial distribution does exactly that.

Feature assumption: the features lie in
  under the constratint that 
 for some 
, the total feature count. Usually, each feature  represents
 a count of the number of types

something occurred in a sequence and  is the length of the sequence. An example of this could be the
count of a specific word  in a document of length , where 
is the size of the vocabulary.

Model assumption: For multinomial Naive Bayes, we use the parameter estimates
 Use the multinomial
distribution

where  represents
the probability of selecting  in any particular element of the sequence, conditioned on the class being .
So, we can use this to generate a spam email, i.e.,
a
document  of class  by picking 
words independently at random from the vocabulary of  words using
 .
Note that this is not exactly satisfying the
Naive Bayes assumption on the features .
 Rather, it corresponds to making the naive Bayes assumption on the members of the underlying sequence, where
 the features are
occurrence counts for items within this sequence. To see that it doesn't
satisfy the Naive Bayes assumption on the features, observe that if we know the counts for all but one of the
features, we'd know the count for the last feature (since they must sum to ); this wouldn't be true
if the features were independent.

Parameter estimation:
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Illustration of Gaussian NB. Each class conditional feature
distribution  is assumed to originate from an

independent Gaussian distribution with its own mean
  and
variance .

Naive Bayes leads to a linear decision boundary in many common
cases. Illustrated here is the case
where  is
Gaussian and where  is identical for all 
(but can differ across dimensions 

). The boundary of the
ellipsoids indicate regions of equal probabilities
 . The red
decision line indicates the decision
boundary where .

Here,  denotes the number of words in
document .
Again,
  is the smoothing parameter.
The numerator sums up all counts for feature 
and the denominator sums up all
counts of all features across all data
points.

Prediction: The prediction made by the Multinomial Naive Bayes classifier is

Case #3: Continuous features (Gaussian Naive Bayes)

Feature assumption: The features for Gaussian Naive Bayes are real numbers .

Model assumption: Use the Gaussian distribution

where  is the mean of the distribution and  is its variance.
Note that the model specified above is
based on
our assumption about the data — that each feature  comes from a
class-conditional Gaussian
distribution. The full distribution of the whole feature vector is also Gaussian, with

, where
  is a diagonal covariance matrix with
 .

Parameter estimation:
As always, we estimate the parameters of the distributions for each
 dimension and
class independently. Gaussian distributions only have two
 parameters, the mean and variance. The mean 

 is
estimated by the average feature value of dimension  from all
samples with label . The (squared) standard deviation is simply the
variance of this estimate.

What is the classification rule for Gaussian Naive Bayes? How much can you simplify the expression?

Naive Bayes is a linear classifier

1. Suppose that  and features are multinomial
 We can
show that

That is, 
 As before, we define
 and
 :

If we use the above to do classification, we can
compute for 

Simplifying this further leads to
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⟺
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> 1 By Bayes rule (the denominator P(x) cancels out, and π+ = P(Y = +1).)

⟺ P(Y = +1|x) > P(Y = −1|x)

⟺ argmax
y

P(Y = y|x) = +1 i.e. the point x lies on the positive side iff Naive Bayes predicts +1
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