Ensemble Methods: Bagging & Random Forest

Announcements

How to split the note, i.e., what is the impurity measure?

How to split the note, i.e., what is the impurity measure?

Consider a set of training points $S = \{x_i, y_i\}_{i=1}^m$

How to split the note, i.e., what is the impurity measure?

Consider a set of training points $S = \{x_i, y_i\}_{i=1}^m$

Define the sample mean
$$\hat{y}_S = \sum_{i=1}^m y_i/m$$

How to split the note, i.e., what is the impurity measure?

Consider a set of training points $S = \{x_i, y_i\}_{i=1}^m$

Define the sample mean
$$\hat{y}_S = \sum_{i=1}^m y_i/m$$

Impurity: sample variance
$$\widehat{Var}(S) = \sum_{i=1}^{m} (y_i - \bar{y}_S)^2 / m$$

The regression Tree algorithm

Regression_Tree(S):

The regression Tree algorithm

Regression_Tree(S):

• IF $|S| \leq k$:

Set leaf value to be \bar{y}_S

The regression Tree algorithm

Regression_Tree(S):

- IF $|S| \le k$: Set leaf value to be \bar{y}_S
- ELSE:

The regression Tree algorithm

Regression_Tree(S):

- IF $|S| \leq k$: Set leaf value to be \bar{y}_{S}
- ELSE:

For all dim and all value, find the split such that minimizes $\frac{|S_L|}{|S|}\widehat{Var}(S_L) + \frac{|S_R|}{|S|}\widehat{Var}(S_R)$

$$\frac{|S_L|}{|S|}\widehat{Var}(S_L) + \frac{|S_R|}{|S|}\widehat{Var}(S_R)$$

The regression Tree algorithm

Regression_Tree(S):

- IF $|S| \le k$: Set leaf value to be \bar{y}_S
- ELSE:

For all dim and all value, find the split such that minimizes $\frac{|S_L|}{|S|}\widehat{Var}(S_L) + \frac{|S_R|}{|S|}\widehat{Var}(S_R)$ Call Regression_Tree(S_L) & Regression_Tree(S_R)

Issues of Decision Trees

Decision Tree can have high variance, i.e., overfilling!

Issues of Decision Trees

Decision Tree can have high variance, i.e., overfilling!

Issues of Decision Trees

Decision Tree can have high variance, i.e., overfilling!

Common regularizations in Decision Trees

1. Minimum number of examples per leaf

No split if # of examples < threshold

Common regularizations in Decision Trees

1. Minimum number of examples per leaf

No split if # of examples < threshold

2. Maximum Depth

No split if it hits depth limit

Common regularizations in Decision Trees

1. Minimum number of examples per leaf

No split if # of examples < threshold

2. Maximum Depth

No split if it hits depth limit

3. Maximum number of nodes

Stop the tree if it hits max # of nodes

Outline of Today

1. Variance Reduction using averaging

2. Bagging: Bootstrap Aggregation

3. Random Forest

Consider i.i.d random variables $\{x_i\}_{i=1}^n$, $x_i \sim \mathcal{N}(0, \sigma^2)$

$$Var(x_i) = \sigma^2$$

Consider i.i.d random variables $\{x_i\}_{i=1}^n$, $x_i \sim \mathcal{N}(0, \sigma^2)$

$$Var(x_i) = \sigma^2$$

Q: what is the variance of
$$\bar{x} = \sum_{i=1}^{n} x_i/n$$

Consider i.i.d random variables $\{x_i\}_{i=1}^n$, $x_i \sim \mathcal{N}(0, \sigma^2)$

$$Var(x_i) = \sigma^2$$

Q: what is the variance of
$$\bar{x} = \sum_{i=1}^{n} x_i/n$$

A:
$$Var(\bar{x}) = \sigma^2/n$$

Consider i.i.d random variables $\{x_i\}_{i=1}^n$, $x_i \sim \mathcal{N}(0, \sigma^2)$

$$Var(x_i) = \sigma^2$$

Q: what is the variance of
$$\bar{x} = \sum_{i=1}^{n} x_i/n$$

A:
$$Var(\bar{x}) = \sigma^2/n$$

Avg significantly reduced variance!

$$\begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} \sim \mathcal{N} \left(\mathbf{0}, \begin{bmatrix} \sigma^2 & \sigma_{1,2} & \sigma_{1,3} \\ \sigma_{2,1} & \sigma^2 & \sigma_{2,3} \\ \sigma_{3,1} & \sigma_{3,2} & \sigma^2 \end{bmatrix} \right)$$

$$\begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} \sim \mathcal{N} \left(\mathbf{0}, \begin{bmatrix} \sigma^2 & \sigma_{1,2} & \sigma_{1,3} \\ \sigma_{2,1} & \sigma^2 & \sigma_{2,3} \\ \sigma_{3,1} & \sigma_{3,2} & \sigma^2 \end{bmatrix} \right)$$

$$\sigma_{i,j} = \mathbb{E}[x_i x_j]$$

Consider (possibly correlated) random variables $\{x_i\}_{i=1}^n$, $x_i \sim \mathcal{N}(0, \sigma^2)$

$$\begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} \sim \mathcal{N} \left(\mathbf{0}, \begin{bmatrix} \sigma^2 & \sigma_{1,2} & \sigma_{1,3} \\ \sigma_{2,1} & \sigma^2 & \sigma_{2,3} \\ \sigma_{3,1} & \sigma_{3,2} & \sigma^2 \end{bmatrix} \right)$$

Q: what is the variance of $\bar{x} = \sum_{i=1}^{\infty} x_i/3$

$$\sigma_{i,j} = \mathbb{E}[x_i x_j]$$

$$\begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} \sim \mathcal{N} \left(\mathbf{0}, \begin{bmatrix} \sigma^2 & \sigma_{1,2} & \sigma_{1,3} \\ \sigma_{2,1} & \sigma^2 & \sigma_{2,3} \\ \sigma_{3,1} & \sigma_{3,2} & \sigma^2 \end{bmatrix} \right)$$
 A: $Var(\bar{x}) = \sigma^2/3 + \sum_{i \neq j} \sigma_{i,j}/9$

Q: what is the variance of
$$\bar{x} = \sum_{i=1}^{\infty} x_i/3$$

A:
$$Var(\bar{x}) = \sigma^2/3 + \sum_{i \neq j} \sigma_{i,j}/9$$

$$\sigma_{i,j} = \mathbb{E}[x_i x_j]$$

Variance Reduction via Averaging

Consider (possibly correlated) random variables $\{x_i\}_{i=1}^n$, $x_i \sim \mathcal{N}(0, \sigma^2)$

$$\begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} \sim \mathcal{N} \left(\mathbf{0}, \begin{bmatrix} \sigma^2 & \sigma_{1,2} & \sigma_{1,3} \\ \sigma_{2,1} & \sigma^2 & \sigma_{2,3} \\ \sigma_{3,1} & \sigma_{3,2} & \sigma^2 \end{bmatrix} \right)$$
 A: $Var(\bar{x}) = \sigma^2/3 + \sum_{i \neq j} \sigma_{i,j}/9$

Q: what is the variance of
$$\bar{x} = \sum_{i=1}^{\infty} x_i/3$$

A:
$$Var(\bar{x}) = \sigma^2/3 + \sum_{i \neq j} \sigma_{i,j}/9$$

$$\sigma_{i,j} = \mathbb{E}[x_i x_j]$$

Worst case: when these RVs are positively correlated, averaging may not reduce variance

Outline of Today

1. Variance Reduction using averaging

2. Bagging: Bootstrap Aggregation

3. Random Forest

Imaging train Decision Tree, i.e., $\hat{h} = \text{ID3}(\mathcal{D})$

Imaging train Decision Tree, i.e., $\hat{h} = \text{ID3}(\mathcal{D})$

 \hat{h} is a random quantity + it has high variance

Imaging train Decision Tree, i.e., $\hat{h} = \text{ID3}(\mathcal{D})$

 \hat{h} is a random quantity + it has high variance

Q: can we learn multiple \hat{h} and perform averaging to reduce variance?

Imaging train Decision Tree, i.e., $\hat{h} = \text{ID3}(\mathcal{D})$

 \hat{h} is a random quantity + it has high variance

Q: can we learn multiple \hat{h} and perform averaging to reduce variance?

Yes, we do this via Bootstrap

Detour: Bootstrapping

Consider dataset $\mathcal{D} = \{z_i\}_{i=1}^n, z_i \sim P$

Detour: Bootstrapping

Consider dataset
$$\mathcal{D} = \{z_i\}_{i=1}^n, z_i \sim P$$

Let us approximate P with the following discrete distribution:

$$\widehat{P}(z_i) = 1/n, \forall i \in [n]$$

Detour: Bootstrapping

Consider dataset
$$\mathcal{D} = \{z_i\}_{i=1}^n, z_i \sim P$$

Let us approximate P with the following discrete distribution:

$$\widehat{P}(z_i) = 1/n, \forall i \in [n]$$

$$\widehat{P}(z_i) = 1/n, \forall i \in [n]$$

Why \hat{P} can be regarded as an approximation of P?

$$\widehat{P}(z_i) = 1/n, \forall i \in [n]$$

Why \hat{P} can be regarded as an approximation of P?

$$\widehat{P}(z_i) = 1/n, \forall i \in [n]$$

Why \hat{P} can be regarded as an approximation of P?

$$\mathbb{E}_{z \sim \hat{P}}[z] = \sum_{i=1}^{n} \frac{z_i}{n}$$

$$\widehat{P}(z_i) = 1/n, \forall i \in [n]$$

Why \hat{P} can be regarded as an approximation of P?

$$\mathbb{E}_{z \sim \hat{P}}[z] = \sum_{i=1}^{n} \frac{z_i}{n} \longrightarrow \mathbb{E}_{z \sim P}[z]$$

$$\widehat{P}(z_i) = 1/n, \forall i \in [n]$$

Why \hat{P} can be regarded as an approximation of P?

$$\mathbb{E}_{z \sim \hat{P}}[z] = \sum_{i=1}^{n} \frac{z_i}{n} \longrightarrow \mathbb{E}_{z \sim P}[z] \qquad \mathbb{E}_{z \sim \hat{P}}[z^2] = \sum_{i=1}^{n} z_i^2 / n$$

$$\widehat{P}(z_i) = 1/n, \forall i \in [n]$$

Why \hat{P} can be regarded as an approximation of P?

$$\mathbb{E}_{z \sim \hat{P}}[z] = \sum_{i=1}^{n} \frac{z_i}{n} \to \mathbb{E}_{z \sim P}[z] \qquad \mathbb{E}_{z \sim \hat{P}}[z^2] = \sum_{i=1}^{n} z_i^2 / n \to \mathbb{E}_{z \sim P}[z^2]$$

$$\widehat{P}(z_i) = 1/n, \forall i \in [n]$$

Why \hat{P} can be regarded as an approximation of P?

1. We can use \hat{P} to approximate P's mean and variance, i.e.,

$$\mathbb{E}_{z \sim \hat{P}}[z] = \sum_{i=1}^{n} \frac{z_i}{n} \to \mathbb{E}_{z \sim P}[z] \qquad \mathbb{E}_{z \sim \hat{P}}[z^2] = \sum_{i=1}^{n} z_i^2 / n \to \mathbb{E}_{z \sim P}[z^2]$$

2. In fact for any $f:Z\to\mathbb{R}$

$$\mathbb{E}_{z \sim \hat{P}}[f(z)] = \sum_{i=1}^{n} \frac{f(z_i)}{n} \to \mathbb{E}_{z \sim P}[f(z)]$$

$$\widehat{P}(z_i) = 1/n, \forall i \in [n]$$

Booststrap: treat \hat{P} as if it were the ground truth distribution P!

$$\widehat{P}(z_i) = 1/n, \forall i \in [n]$$

Booststrap: treat \hat{P} as if it were the ground truth distribution P!

Now we can draw as many samples as we want from \hat{P} !

$$\widehat{P}(z_i) = 1/n, \forall i \in [n]$$

Booststrap: treat \hat{P} as if it were the ground truth distribution P!

Now we can draw as many samples as we want from \hat{P} !

Q: What's the procedure of drawing n i.i.d samples from \hat{P} ?

$$\widehat{P}(z_i) = 1/n, \forall i \in [n]$$

Booststrap: treat \hat{P} as if it were the ground truth distribution P!

Now we can draw as many samples as we want from \hat{P} !

Q: What's the procedure of drawing n i.i.d samples from \hat{P} ?

A: sample uniform randomly from \hat{P} n times **w/ replacement**

$$\widehat{P}(z_i) = 1/n, \forall i \in [n]$$

Booststrap: treat \hat{P} as if it were the ground truth distribution P!

Now we can draw as many samples as we want from \hat{P} !

Q: What's the procedure of drawing n i.i.d samples from \hat{P} ?

A: sample uniform randomly from \hat{P} n times **w/ replacement**

Q: after n samples, what's the probability that z_1 never being sampled?

$$\widehat{P}(z_i) = 1/n, \forall i \in [n]$$

Booststrap: treat \hat{P} as if it were the ground truth distribution P!

Now we can draw as many samples as we want from \hat{P} !

Q: What's the procedure of drawing n i.i.d samples from \hat{P} ?

A: sample uniform randomly from \hat{P} n times **w/ replacement**

Q: after n samples, what's the probability that z_1 never being sampled?

A:
$$(1 - 1/n)^n \rightarrow 1/e, n \rightarrow \infty$$

Consider dataset $\mathcal{D} = \{x_i, y_i\}_{i=1}^n, (x_i, y_i) \sim P, x_i \in \mathbb{R}^d, y_i \in \{-1, 1\}$

Consider dataset
$$\mathcal{D} = \{x_i, y_i\}_{i=1}^n, (x_i, y_i) \sim P, x_i \in \mathbb{R}^d, y_i \in \{-1, 1\}$$

1. Construct \hat{P} , s.t., $\hat{P}(x_i, y_i) = 1/n$, $\forall i \in [n]$

Consider dataset
$$\mathcal{D} = \{x_i, y_i\}_{i=1}^n, (x_i, y_i) \sim P, x_i \in \mathbb{R}^d, y_i \in \{-1, 1\}$$

- 1. Construct \hat{P} , s.t., $\hat{P}(x_i, y_i) = 1/n$, $\forall i \in [n]$
- 2. Treat \hat{P} as the ground truth, draw k datasets $\mathcal{D}_1, \mathcal{D}_2, \ldots, \mathcal{D}_k$ from \hat{P}

Consider dataset
$$\mathcal{D} = \{x_i, y_i\}_{i=1}^n, (x_i, y_i) \sim P, x_i \in \mathbb{R}^d, y_i \in \{-1, 1\}$$

- 1. Construct \hat{P} , s.t., $\hat{P}(x_i, y_i) = 1/n, \forall i \in [n]$
- 2. Treat \hat{P} as the ground truth, draw k datasets $\mathscr{D}_1, \mathscr{D}_2, ..., \mathscr{D}_k$ from \hat{P}

Consider dataset
$$\mathcal{D} = \{x_i, y_i\}_{i=1}^n, (x_i, y_i) \sim P, x_i \in \mathbb{R}^d, y_i \in \{-1, 1\}$$

- 1. Construct \hat{P} , s.t., $\hat{P}(x_i, y_i) = 1/n, \forall i \in [n]$
- 2. Treat \hat{P} as the ground truth, draw k datasets $\mathscr{D}_1, \mathscr{D}_2, ..., \mathscr{D}_k$ from \hat{P}
- 3. For each $i \in [k]$, train classifier, e.g., $\hat{h}_k = \text{ID3}(\mathcal{D}_k)$

Consider dataset
$$\mathcal{D} = \{x_i, y_i\}_{i=1}^n, (x_i, y_i) \sim P, x_i \in \mathbb{R}^d, y_i \in \{-1, 1\}$$

- 1. Construct \hat{P} , s.t., $\hat{P}(x_i, y_i) = 1/n, \forall i \in [n]$
- 2. Treat \hat{P} as the ground truth, draw k datasets $\mathcal{D}_1,\mathcal{D}_2,...,\mathcal{D}_k$ from \hat{P}
- 3. For each $i \in [k]$, train classifier, e.g., $\hat{h}_k = \text{ID}3(\mathcal{D}_k)$
- 4. Averaging / Aggregation, i.e., $\bar{h} = \sum_{i=1}^{\kappa} \hat{h}_i/k$

Consider dataset
$$\mathcal{D} = \{x_i, y_i\}_{i=1}^n, (x_i, y_i) \sim P, x_i \in \mathbb{R}^d, y_i \in \{-1, 1\}$$

- 1. Construct \hat{P} , s.t., $\hat{P}(x_i, y_i) = 1/n, \forall i \in [n]$
- 2. Treat \hat{P} as the ground truth, draw k datasets $\mathcal{D}_1,\mathcal{D}_2,...,\mathcal{D}_k$ from \hat{P}
- 3. For each $i \in [k]$, train classifier, e.g., $\hat{h}_k = \text{ID}3(\mathcal{D}_k)$
- 4. Averaging / Aggregation, i.e., $\bar{h} = \sum_{i=1}^{\kappa} \hat{h}_i/k$

The step that reduces Var!

Bagging in Test Time

Given a test example x_{test}

We can use $\{\hat{h}_i\}_{i=1}^k$ to form a distribution over labels:

$$\hat{y} = \begin{bmatrix} p \\ 1 - p \end{bmatrix}$$

Bagging in Test Time

Given a test example x_{test}

We can use $\{\hat{h}_i\}_{i=1}^k$ to form a distribution over labels:

$$\hat{y} = \begin{bmatrix} p \\ 1 - p \end{bmatrix}$$

where:

$$p = \frac{\text{# of trees predicting -1}}{k}$$

$$\bar{h} = \sum_{i=1}^{k} \hat{h}_i / k$$
 What happens when $k \to \infty$?

$$\bar{h} = \sum_{i=1}^{k} \hat{h}_i / k$$
 What happens when $k \to \infty$?

$$\bar{h} \to \mathbb{E}_{\mathcal{D} \sim \hat{P}} \left[\mathsf{ID3}(\mathcal{D}) \right]$$

$$\bar{h} = \sum_{i=1}^{k} \hat{h}_i / k$$
 What happens when $k \to \infty$?

$$\bar{h} \to \mathbb{E}_{\mathcal{D} \sim \hat{P}} \left[\mathsf{ID3}(\mathcal{D}) \right]$$

$$\hat{P} \rightarrow P$$
, when $n \rightarrow \infty$

$$\bar{h} = \sum_{i=1}^{k} \hat{h}_i / k$$
 What happens when $k \to \infty$?

$$\bar{h} \to \mathbb{E}_{\mathcal{D} \sim \hat{P}} \left[\mathsf{ID3}(\mathcal{D}) \right]$$

$$\hat{P} \rightarrow P$$
, when $n \rightarrow \infty$

$$\mathbb{E}_{\mathcal{D}\sim P}\left[\mathsf{ID3}(\mathcal{D})\right]$$

$$\bar{h} = \sum_{i=1}^{k} \hat{h}_i / k$$
 What happens when $k \to \infty$?

$$\bar{h} \to \mathbb{E}_{\mathcal{D} \sim \hat{P}} \left[\mathsf{ID3}(\mathcal{D}) \right]$$

$$\hat{P}
ightarrow P$$
, when $n
ightarrow \infty$

$$\mathbb{E}_{\mathcal{D} \sim P} \left[\mathsf{ID3}(\mathcal{D}) \right]$$
 The expected decision tree (under true P)

Bagging reduces variance

$$\bar{h} = \sum_{i=1}^{k} \hat{h}_i / k$$
 What happens when $k \to \infty$?

$$\bar{h} \to \mathbb{E}_{\mathcal{D} \sim \hat{P}} \left[\mathsf{ID3}(\mathcal{D}) \right]$$

$$\hat{P} \rightarrow P$$
, when $n \rightarrow \infty$

$$\mathbb{E}_{\mathcal{D}\sim P}\left[\mathsf{ID3}(\mathcal{D})\right]$$

 $\mathbb{E}_{\mathcal{D} \sim P} \left[\mathsf{ID}3(\mathcal{D}) \right]$ The expected decision tree (under true P)

Deterministic, i.e., zero variance

Outline of Today

1. Variance Reduction using averaging

2. Bagging: Bootstrap Aggregation

3. Random Forest

Consider any two hypothesis $\hat{h}_i, \hat{h}_j, i \neq j$ in Bagging

Consider any two hypothesis $\hat{h}_i, \hat{h}_j, i \neq j$ in Bagging

 \hat{h}_i, \hat{h}_i are not independent under true distribution P

Consider any two hypothesis $\hat{h}_i, \hat{h}_j, i \neq j$ in Bagging

 \hat{h}_{j},\hat{h}_{i} are not independent under true distribution P

e.g., \mathcal{D}_i , \mathcal{D}_j have overlap samples

Consider any two hypothesis $\hat{h}_i, \hat{h}_j, i \neq j$ in Bagging

 \hat{h}_{j},\hat{h}_{i} are not independent under true distribution P

e.g., \mathcal{D}_i , \mathcal{D}_j have overlap samples

Recall that:
$$Var(\bar{x}) = \sigma^2/3 + \sum_{i \neq j} \sigma_{i,j}/9$$

Consider any two hypothesis $\hat{h}_i, \hat{h}_j, i \neq j$ in Bagging

 \hat{h}_{j},\hat{h}_{i} are not independent under true distribution P

e.g., \mathcal{D}_i , \mathcal{D}_j have overlap samples

Recall that:
$$Var(\bar{x}) = \sigma^2/3 + \sum_{i \neq j} \sigma_{i,j}/9$$

To avoid positive correlation, we want to make \hat{h}_i, \hat{h}_j as independent as possible

Key idea:

In ID3, for every split, randomly select k (k < d) many features, find the split only using these k features

Key idea:

In ID3, for every split, randomly select k (k < d) many features, find the split only using these k features

Key idea:

In ID3, for every split, randomly select k (k < d) many features, find the split only using these k features

Regular ID3: looking for split in all d dimensions

Key idea:

In ID3, for every split, randomly select k (k < d) many features, find the split only using these k features

Regular ID3: looking for split in all d dimensions

ID3 in RF: looking for split in k randomly picked dimensions

Benefit of Random Forest

By always randomly selecting subset of features for every tree, and every split:

We further reduce the correlation between $\hat{h}_i \, \& \, \hat{h}_j$

DT w/ Depth 10

DT w/ Depth 10

RF w/ 2 trees

DT w/ Depth 10

RF w/ 5 trees

DT w/ Depth 10

RF w/ 2 trees

RF w/ 5 trees

RF w/ 10 trees

DT w/ Depth 10

RF w/ 2 trees

RF w/ 5 trees

RF w/ 10 trees

RF w/ 20 trees

RF w/ 50 trees

Summary for today

An approach to reduce the variance of our classifier:

Summary for today

An approach to reduce the variance of our classifier:

1. Create datasets via bootstrapping + train classifiers on them + averaging

Summary for today

An approach to reduce the variance of our classifier:

- 1. Create datasets via bootstrapping + train classifiers on them + averaging
 - 2. To further reduce correlation between classifiers, RF randomly selects subset of dimensions for every split.