
Curse of Dimensionality
&

Clustering

Announcement:

1. P1 will be out today

2. Office hour today 2-3 pm

Recap
The K-NN algorithm

Example: 3-NN with Euclidean distance on a binary classification data

Recap

Bayes optimal Predictor: yb = hopt(x) = arg max
y∈{−1,1}

P(y |x)

Assume , has support everywhere , x ∈ [−1,1]2 P(x) P(x) > 0,∀x ∈ [−1,1]2 n → ∞

∀x ∈ [−1,1]2 : ℙ(y ≠ 1NN(x)) ≤ 2ℙ(y ≠ hopt(x))

Key point: K-NN can work well when is very large.
n
d

Outline for Today

1. Curse of dimensionality

2. Unsupervised Learning: Clustering and the K-means algorithm

3. Convergence of K-means

Finite sample error rate of 1-NN in high-dimension setting

(Informal result and no proof)

Fix , assume , assume is Lipschitz
continuous with respect to , i.e.,

n ∈ ℕ+ x ∈ [0,1]d P(y |x)
x |P(y |x) − P(y |x′￼) | ≤ d(x, x′￼)

Then, we have:

 𝔼x,y∼P [1(y ≠ 1NN(x))] ≤ 2𝔼x,y∼P [1(y ≠ hopt(x))] + O ((1
n)

1/d

)

Finite sample error rate of 1-NN in high-dimension setting

(Informal result and no proof)

Fix , assume , assume is Lipschitz
continuous with respect to , i.e.,

n ∈ ℕ+ x ∈ [0,1]d P(y |x)
x |P(y |x) − P(y |x′￼) | ≤ d(x, x′￼)

Then, we have:

 𝔼x,y∼P [1(y ≠ 1NN(x))] ≤ 2𝔼x,y∼P [1(y ≠ hopt(x))] + O ((1
n)

1/d

)
Q: Assume Bayes optimal has error zero, to make 1-NN’s error upper bounded by ,

How many samples do we need?
0.1

Finite sample error rate of 1-NN in high-dimension setting

(Informal result and no proof)

Fix , assume , assume is Lipschitz
continuous with respect to , i.e.,

n ∈ ℕ+ x ∈ [0,1]d P(y |x)
x |P(y |x) − P(y |x′￼) | ≤ d(x, x′￼)

Then, we have:

 𝔼x,y∼P [1(y ≠ 1NN(x))] ≤ 2𝔼x,y∼P [1(y ≠ hopt(x))] + O ((1
n)

1/d

)
Q: Assume Bayes optimal has error zero, to make 1-NN’s error upper bounded by ,

How many samples do we need?
0.1

(1/n)1/d = 0.1

Finite sample error rate of 1-NN in high-dimension setting

(Informal result and no proof)

Fix , assume , assume is Lipschitz
continuous with respect to , i.e.,

n ∈ ℕ+ x ∈ [0,1]d P(y |x)
x |P(y |x) − P(y |x′￼) | ≤ d(x, x′￼)

Then, we have:

 𝔼x,y∼P [1(y ≠ 1NN(x))] ≤ 2𝔼x,y∼P [1(y ≠ hopt(x))] + O ((1
n)

1/d

)
Q: Assume Bayes optimal has error zero, to make 1-NN’s error upper bounded by ,

How many samples do we need?
0.1

(1/n)1/d = 0.1 ⇒ n = (10)d

Curse of Dimensionality Intuitive Explanation

Key problem: in high dimensional space, points that are draw from a
distribution tends to be far away from each other!

Curse of Dimensionality Intuitive Explanation

Key problem: in high dimensional space, points that are draw from a
distribution tends to be far away from each other!

Example: let us consider uniform distribution over a cube [0,1]d

Curse of Dimensionality Intuitive Explanation

Key problem: in high dimensional space, points that are draw from a
distribution tends to be far away from each other!

Example: let us consider uniform distribution over a cube [0,1]d

Q: sample uniformly, what is the probability that
is inside the small cube?

x x

Curse of Dimensionality Intuitive Explanation

Key problem: in high dimensional space, points that are draw from a
distribution tends to be far away from each other!

Example: let us consider uniform distribution over a cube [0,1]d

Q: sample uniformly, what is the probability that
is inside the small cube?

x x

A: Volume(small cube)/volume([0,1]d)

Curse of Dimensionality Intuitive Explanation

Key problem: in high dimensional space, points that are draw from a
distribution tends to be far away from each other!

Example: let us consider uniform distribution over a cube [0,1]d

Q: sample uniformly, what is the probability that
is inside the small cube?

x x

A: Volume(small cube)/volume([0,1]d) = ld

Curse of Dimensionality Explanation

Example: let us consider uniform distribution over a cube [0,1]d

Now assume we sample points uniform randomly in the big
cube, and we observe points fall inside the small cube

n
K

Curse of Dimensionality Explanation

Example: let us consider uniform distribution over a cube [0,1]d

Now assume we sample points uniform randomly in the big
cube, and we observe points fall inside the small cube

n
K

So empirically, the probability of sampling a
point inside the small cube is roughly K/n

Curse of Dimensionality Explanation

Example: let us consider uniform distribution over a cube [0,1]d

Now assume we sample points uniform randomly in the big
cube, and we observe points fall inside the small cube

n
K

So empirically, the probability of sampling a
point inside the small cube is roughly K/n

ld ≈
K
n

Thus, we have

Curse of Dimensionality Explanation

Example: let us consider uniform distribution over a cube [0,1]d

ld ≈
K
n

We have

Curse of Dimensionality Explanation

Example: let us consider uniform distribution over a cube [0,1]d

ld ≈
K
n

We have Q: how large we should set , s.t., we will
have K examples (out of n) fall inside the

small cube?

l

Curse of Dimensionality Explanation

Example: let us consider uniform distribution over a cube [0,1]d

ld ≈
K
n

We have Q: how large we should set , s.t., we will
have K examples (out of n) fall inside the

small cube?

l

l ≈ (K/n)1/d

Curse of Dimensionality Explanation

Example: let us consider uniform distribution over a cube [0,1]d

ld ≈
K
n

We have Q: how large we should set , s.t., we will
have K examples (out of n) fall inside the

small cube?

l

l ≈ (K/n)1/d → 1, as d → ∞

Curse of Dimensionality Explanation

Example: let us consider uniform distribution over a cube [0,1]d

ld ≈
K
n

We have Q: how large we should set , s.t., we will
have K examples (out of n) fall inside the

small cube?

l

l ≈ (K/n)1/d → 1, as d → ∞

Bad news: when , the K nearest
neighbors will be all over the place!

(Cannot trust them, as they are not nearby
points anymore!)

d → ∞

The distance between two sampled points increases as growsd

The distance between two sampled points increases as growsd

In , we uniformly
sample two points ,

calculate

[0,1]d

x, x′￼

d(x, x′￼) = ∥x − x′￼∥2

The distance between two sampled points increases as growsd

In , we uniformly
sample two points ,

calculate

[0,1]d

x, x′￼

d(x, x′￼) = ∥x − x′￼∥2

Let’s plot the
distribution of
such distance:

The distance between two sampled points increases as growsd

In , we uniformly
sample two points ,

calculate

[0,1]d

x, x′￼

d(x, x′￼) = ∥x − x′￼∥2

Let’s plot the
distribution of
such distance:

The distance between two sampled points increases as growsd

In , we uniformly
sample two points ,

calculate

[0,1]d

x, x′￼

d(x, x′￼) = ∥x − x′￼∥2

Let’s plot the
distribution of
such distance:

The distance between two sampled points increases as growsd

In , we uniformly
sample two points ,

calculate

[0,1]d

x, x′￼

d(x, x′￼) = ∥x − x′￼∥2

Let’s plot the
distribution of
such distance:

Distance increases as d → ∞

Luckily, real world data often has low-dimensional structure!

Data lives in 2-d manifold

Luckily, real world data often has low-dimensional structure!

Data lives in 2-d manifold

Example: face images

Luckily, real world data often has low-dimensional structure!

Data lives in 2-d manifold

Example: face images

Original image: ℝ642

Luckily, real world data often has low-dimensional structure!

Data lives in 2-d manifold

Example: face images

Original image: ℝ642

Next week: we will see
that these faces

approximately live in 100-
d space!

Outline for Today

1. Curse of dimensionality

2. Unsupervised Learning: Clustering and the K-means algorithm

3. Convergence of K-means

What is clustering?

It is an unsupervised learning procedure (i.e., applies to data without ground truth labels)

Usage of clustering algorithms in real world

Example: Learning to detect cars without ground truth label

A point cloud from a Lidar sweep (4-d data)

Usage of clustering algorithms in real world

Example: Learning to detect cars without ground truth label

A point cloud from a Lidar sweep (4-d data)

Apply clustering
on this dataset
(point cloud)

Different color represents different clusters

Usage of clustering algorithms in real world

Example: Learning to detect cars without ground truth label

Different color represents different clusters

Fitting
bounding box

around clusters

These boxes are the pseudo-labels we
use to train detector

The K-means algorithm

Input , parameters 𝒟 = {x1, …, xn}, xi ∈ ℝd K

The K-means algorithm

Input , parameters 𝒟 = {x1, …, xn}, xi ∈ ℝd K

Expected output: K centroids , and K clusters {μ1, μ2, …, μk}, μi ∈ ℝd C1 . …, CK

The K-means algorithm

Input , parameters 𝒟 = {x1, …, xn}, xi ∈ ℝd K

Expected output: K centroids , and K clusters {μ1, μ2, …, μk}, μi ∈ ℝd C1 . …, CK

The data assignment procedure:

The K-means algorithm

Input , parameters 𝒟 = {x1, …, xn}, xi ∈ ℝd K

Expected output: K centroids , and K clusters {μ1, μ2, …, μk}, μi ∈ ℝd C1 . …, CK

The data assignment procedure:

If we had centroids, we could split the
dataset into K clusters, , by

K
C1, …, CK

assigning each data point to its nearest centroid

The K-means algorithm

Input , parameters 𝒟 = {x1, …, xn}, xi ∈ ℝd K

Expected output: K centroids , and K clusters {μ1, μ2, …, μk}, μi ∈ ℝd C1 . …, CK

Ci = {x ∈ 𝒟 s.t., μi is the closest centroid to x}

The data assignment procedure:

If we had centroids, we could split the
dataset into K clusters, , by

K
C1, …, CK

assigning each data point to its nearest centroid

The data assignment procedure

 centroids splits the space into a voronoi diagram K μ1, …, μk

The centroid computation procedure

The centroid computation procedure

If we magically had the clusters ,
we could compute centroids as follows:

C1, …, CK

 the mean of the data in μi : Ci

The K-means algorithm
Iterate between Centroid computation and Data Assignment!

The K-means algorithm

Initialize K clusters C1, C2, …, CK, where ∪K
i=1 Ci = 𝒟, and Ci ∩ Cj = ∅, for i ≠ j

Iterate between Centroid computation and Data Assignment!

The K-means algorithm

Initialize K clusters C1, C2, …, CK, where ∪K
i=1 Ci = 𝒟, and Ci ∩ Cj = ∅, for i ≠ j

Repeat until convergence:

Iterate between Centroid computation and Data Assignment!

The K-means algorithm

Initialize K clusters C1, C2, …, CK, where ∪K
i=1 Ci = 𝒟, and Ci ∩ Cj = ∅, for i ≠ j

1. centroids computation using , i.e.,for all i,

 (i.e., the mean of the data in)

C1, …, CK
μi = ∑

x∈Ci

x/ |Ci | Ci

Repeat until convergence:

Iterate between Centroid computation and Data Assignment!

The K-means algorithm

Initialize K clusters C1, C2, …, CK, where ∪K
i=1 Ci = 𝒟, and Ci ∩ Cj = ∅, for i ≠ j

2. the data assignment procedure, i.e., re-split
data into using C1, …, CK, μ1, …, μk

1. centroids computation using , i.e.,for all i,

 (i.e., the mean of the data in)

C1, …, CK
μi = ∑

x∈Ci

x/ |Ci | Ci

Repeat until convergence:

Iterate between Centroid computation and Data Assignment!

The K-means algorithm

The K-means algorithm

The K-means algorithm

The K-means algorithm

….

Outline for Today

1. Curse of dimensionality

2. Unsupervised Learning: Clustering and the K-means algorithm

3. Convergence of K-means

Does K-means algorithm converge?

Yes, though it does not guarantee to return the globally optimal solution

Does K-means algorithm converge?

Yes, though it does not guarantee to return the globally optimal solution

Given any K disjoint groups , and any K centroids, define a loss function: C1, C2, …, CK

ℓ({Ci}, {μi}) =
K

∑
i=1

∑
x∈Ci

∥x − μi∥2
2

Does K-means algorithm converge?

Yes, though it does not guarantee to return the globally optimal solution

Given any K disjoint groups , and any K centroids, define a loss function: C1, C2, …, CK

ℓ({Ci}, {μi}) =
K

∑
i=1

∑
x∈Ci

∥x − μi∥2
2

Total distance of points in to Ci μi

K-means as a Coordinate Descent Algorithm

ℓ({Ci}, {μi}) =
K

∑
i=1

∑
x∈Ci

∥x − μi∥2
2

K-means as a Coordinate Descent Algorithm

ℓ({Ci}, {μi}) =
K

∑
i=1

∑
x∈Ci

∥x − μi∥2
2

K-means minimizes in an alternating fashion: ℓ

K-means as a Coordinate Descent Algorithm

ℓ({Ci}, {μi}) =
K

∑
i=1

∑
x∈Ci

∥x − μi∥2
2

Q1: w/ fix, what is ? C1, …, CK arg min
μ1,…,μk

ℓ({Ci}, {μi})

K-means minimizes in an alternating fashion: ℓ

K-means as a Coordinate Descent Algorithm

ℓ({Ci}, {μi}) =
K

∑
i=1

∑
x∈Ci

∥x − μi∥2
2

Q1: w/ fix, what is ? C1, …, CK arg min
μ1,…,μk

ℓ({Ci}, {μi})

Q2: w/ fix, what is ? μ1, …, μK arg min
C1,…,Ck

ℓ({Ci}, {μi})

K-means minimizes in an alternating fashion: ℓ

K means is doing Coordinate Descent here

ℓ({Ci}, {μi}) =
K

∑
i=1

∑
x∈Ci

∥x − μi∥2
2

K-means Algorithm: (re-stated from a different perspective)

Initialize μ1, …, μK
Repeat until convergence:

K means is doing Coordinate Descent here

ℓ({Ci}, {μi}) =
K

∑
i=1

∑
x∈Ci

∥x − μi∥2
2

 C1, …, CK = arg min
C1,…,Ck

ℓ({Ci}, {μi})

K-means Algorithm: (re-stated from a different perspective)

Initialize μ1, …, μK
Repeat until convergence:

K means is doing Coordinate Descent here

ℓ({Ci}, {μi}) =
K

∑
i=1

∑
x∈Ci

∥x − μi∥2
2

μ1, …, μK = arg min
μ1,…,μk

ℓ({Ci}, {μi})

 C1, …, CK = arg min
C1,…,Ck

ℓ({Ci}, {μi})

K-means Algorithm: (re-stated from a different perspective)

Initialize μ1, …, μK
Repeat until convergence:

How to pick K?

ℓK := min
C1,…,CK,μ1,…,μK

ℓ({Ci}, {μi}) =
K

∑
i=1

∑
x∈Ci

∥x − μi∥2
2

Given , we can look at the minimum lossK

How to pick K?

ℓK := min
C1,…,CK,μ1,…,μK

ℓ({Ci}, {μi}) =
K

∑
i=1

∑
x∈Ci

∥x − μi∥2
2

Given , we can look at the minimum lossK

Note that exactly compute the is NP-hard, but we can approximate it w/ K-means
solutions

min

How to pick K?

ℓK := min
C1,…,CK,μ1,…,μK

ℓ({Ci}, {μi}) =
K

∑
i=1

∑
x∈Ci

∥x − μi∥2
2

Given , we can look at the minimum lossK

Q: Should we just naively pick a K that the is zero? ℓK

Note that exactly compute the is NP-hard, but we can approximate it w/ K-means
solutions

min

How to pick K?

ℓK := min
C1,…,CK,μ1,…,μK

ℓ({Ci}, {μi}) =
K

∑
i=1

∑
x∈Ci

∥x − μi∥2
2

Given , we can look at the minimum lossK

Q: Should we just naively pick a K that the is zero? ℓK

No! When , loss is zero (every data point is a cluster!)K = n

Note that exactly compute the is NP-hard, but we can approximate it w/ K-means
solutions

min

How to pick K?

How to pick K?
In practice, we can gradually increase K, and keep track the loss , and stop when does

not drop too much
ℓK ℓK

How to pick K?
In practice, we can gradually increase K, and keep track the loss , and stop when does

not drop too much
ℓK ℓK

Summary

1. Curse of Dimensionality:

Data points in high-dim space tends to spread far from each other

2. The first Unsupervised Learning Algorithm — K means

Coordinate Descent on the loss ℓ({Ci}, {μi})

