Curse of Dimensionality & Clustering

Announcement:

1. P1 will be out today

2. Office hour today 2-3 pm

Recap

The K-NN algorithm

Example: 3-NN with Euclidean distance on a binary classification data

Recap

Bayes optimal Predictor:
$$y_b = h_{opt}(x) = \arg\max_{y \in \{-1,1\}} P(y \mid x)$$

Assume $x \in [-1,1]^2$, P(x) has support everywhere $P(x) > 0, \forall x \in [-1,1]^2$, $n \to \infty$

$$\forall x \in [-1,1]^2 : \mathbb{P}(y \neq 1NN(x)) \leq 2\mathbb{P}(y \neq h_{opt}(x))$$

Key point: K-NN can work well when $\frac{n}{d}$ is very large.

Outline for Today

1. Curse of dimensionality

2. Unsupervised Learning: Clustering and the K-means algorithm

3. Convergence of K-means

(Informal result and no proof)

Fix $n \in \mathbb{N}^+$, assume $x \in [0,1]^d$, assume P(y|x) is Lipschitz continuous with respect to x, i.e., $|P(y|x) - P(y|x')| \le d(x,x')$

Then, we have:

$$\mathbb{E}_{x,y\sim P}\left[\mathbf{1}(y\neq 1\mathsf{NN}(x))\right] \leq 2\mathbb{E}_{x,y\sim P}\left[\mathbf{1}(y\neq h_{opt}(x))\right] + O\left(\left(\frac{1}{n}\right)^{1/d}\right)$$

(Informal result and no proof)

Fix $n \in \mathbb{N}^+$, assume $x \in [0,1]^d$, assume P(y|x) is Lipschitz continuous with respect to x, i.e., $|P(y|x) - P(y|x')| \le d(x,x')$

Then, we have:

$$\mathbb{E}_{x,y\sim P}\left[\mathbf{1}(y\neq 1\mathsf{NN}(x))\right] \leq 2\mathbb{E}_{x,y\sim P}\left[\mathbf{1}(y\neq h_{opt}(x))\right] + O\left(\left(\frac{1}{n}\right)^{1/d}\right)$$

Q: Assume Bayes optimal has error zero, to make 1-NN's error upper bounded by 0.1, How many samples do we need?

(Informal result and no proof)

Fix $n \in \mathbb{N}^+$, assume $x \in [0,1]^d$, assume P(y|x) is Lipschitz continuous with respect to x, i.e., $|P(y|x) - P(y|x')| \le d(x,x')$

Then, we have:

$$\mathbb{E}_{x,y\sim P}\left[\mathbf{1}(y\neq 1\mathsf{NN}(x))\right] \leq 2\mathbb{E}_{x,y\sim P}\left[\mathbf{1}(y\neq h_{opt}(x))\right] + O\left(\left(\frac{1}{n}\right)^{1/d}\right)$$

Q: Assume Bayes optimal has error zero, to make 1-NN's error upper bounded by 0.1, How many samples do we need?

$$(1/n)^{1/d} = 0.1$$

(Informal result and no proof)

Fix $n \in \mathbb{N}^+$, assume $x \in [0,1]^d$, assume P(y|x) is Lipschitz continuous with respect to x, i.e., $|P(y|x) - P(y|x')| \le d(x,x')$

Then, we have:

$$\mathbb{E}_{x,y\sim P}\left[\mathbf{1}(y\neq 1\mathsf{NN}(x))\right] \leq 2\mathbb{E}_{x,y\sim P}\left[\mathbf{1}(y\neq h_{opt}(x))\right] + O\left(\left(\frac{1}{n}\right)^{1/d}\right)$$

Q: Assume Bayes optimal has error zero, to make 1-NN's error upper bounded by 0.1, How many samples do we need?

$$(1/n)^{1/d} = 0.1 \implies n = (10)^d$$

Key problem: in high dimensional space, points that are draw from a distribution tends to be far away from each other!

Key problem: in high dimensional space, points that are draw from a distribution tends to be far away from each other!

Example: let us consider uniform distribution over a cube $[0,1]^d$

Key problem: in high dimensional space, points that are draw from a distribution tends to be far away from each other!

Example: let us consider uniform distribution over a cube $[0,1]^d$

Q: sample x uniformly, what is the probability that x is inside the small cube?

Key problem: in high dimensional space, points that are draw from a distribution tends to be far away from each other!

Example: let us consider uniform distribution over a cube $[0,1]^d$

Q: sample x uniformly, what is the probability that x is inside the small cube?

A: Volume(small cube)/volume($[0,1]^d$)

Key problem: in high dimensional space, points that are draw from a distribution tends to be far away from each other!

Example: let us consider uniform distribution over a cube $[0,1]^d$

Q: sample x uniformly, what is the probability that x is inside the small cube?

A: Volume(small cube)/volume($[0,1]^d$) = l^d

Example: let us consider uniform distribution over a cube $[0,1]^d$

Now assume we sample n points uniform randomly in the big cube, and we observe K points fall inside the small cube

Example: let us consider uniform distribution over a cube $[0,1]^d$

Now assume we sample n points uniform randomly in the big cube, and we observe K points fall inside the small cube

So empirically, the probability of sampling a point inside the small cube is roughly K/n

Example: let us consider uniform distribution over a cube $[0,1]^d$

Now assume we sample n points uniform randomly in the big cube, and we observe K points fall inside the small cube

So empirically, the probability of sampling a point inside the small cube is roughly K/n

Thus, we have
$$l^d \approx \frac{K}{n}$$

Example: let us consider uniform distribution over a cube $[0,1]^d$

We have
$$l^d \approx \frac{K}{n}$$

Example: let us consider uniform distribution over a cube $[0,1]^d$

We have
$$l^d \approx \frac{K}{m}$$

Q: how large we should set l, s.t., we will have K examples (out of n) fall inside the small cube?

Example: let us consider uniform distribution over a cube $[0,1]^d$

We have
$$l^d \approx \frac{K}{m}$$

Q: how large we should set l, s.t., we will have K examples (out of n) fall inside the small cube?

$$l \approx (K/n)^{1/d}$$

Example: let us consider uniform distribution over a cube $[0,1]^d$

We have
$$l^d \approx \frac{K}{m}$$

Q: how large we should set l, s.t., we will have K examples (out of n) fall inside the small cube?

$$l \approx (K/n)^{1/d} \rightarrow 1$$
, as $d \rightarrow \infty$

Example: let us consider uniform distribution over a cube $[0,1]^d$

We have
$$l^d \approx \frac{K}{n}$$

Q: how large we should set l, s.t., we will have K examples (out of n) fall inside the small cube?

$$l \approx (K/n)^{1/d} \rightarrow 1$$
, as $d \rightarrow \infty$

Bad news: when $d \to \infty$, the K nearest neighbors will be all over the place! (Cannot trust them, as they are not nearby points anymore!)

The distance between two sampled points increases as d grows

In $[0,1]^d$, we uniformly sample two points x, x', calculate $d(x,x') = ||x-x'||_2$

The distance between two sampled points increases as d grows

In $[0,1]^d$, we uniformly sample two points x, x', calculate $d(x,x') = ||x-x'||_2$

Let's plot the distribution of such distance:

The distance between two sampled points increases as d grows

In $[0,1]^d$, we uniformly sample two points x, x', calculate $d(x,x') = ||x-x'||_2$

Let's plot the distribution of such distance:

The distance between two sampled points increases as \emph{d} grows

distances

In $[0,1]^d$, we uniformly sample two points x, x', calculate $d(x,x') = ||x-x'||_2$

Let's plot the distribution of such distance:

distances

distances

The distance between two sampled points increases as \emph{d} grows

In $[0,1]^d$, we uniformly sample two points x, x', calculate $d(x,x') = ||x-x'||_2$

Let's plot the distribution of such distance:

Distance increases as $d \rightarrow \infty$

Data lives in 2-d manifold

Example: face images

Data lives in 2-d manifold

Example: face images

Data lives in 2-d manifold

Original image: \mathbb{R}^{64^2}

Example: face images Bill Gates Arnold Schwarzenegger Gwyneth Paltrow And Company Com

Data lives in 2-d manifold

Original image: \mathbb{R}^{64^2}

Next week: we will see that these faces approximately live in 100d space!

Outline for Today

1. Curse of dimensionality

2. Unsupervised Learning: Clustering and the K-means algorithm

3. Convergence of K-means

What is clustering?

It is an unsupervised learning procedure (i.e., applies to data without ground truth labels)

Usage of clustering algorithms in real world

Example: Learning to detect cars without ground truth label

A point cloud from a Lidar sweep (4-d data)

Usage of clustering algorithms in real world

Example: Learning to detect cars without ground truth label

A point cloud from a Lidar sweep (4-d data)

Different color represents different clusters

Usage of clustering algorithms in real world

Example: Learning to detect cars without ground truth label

Fitting bounding box around clusters

3. Fit Bounding Boxes

These boxes are the pseudo-labels we use to train detector

Different color represents different clusters

Input $\mathcal{D} = \{x_1, ..., x_n\}, x_i \in \mathbb{R}^d$, parameters K

Input $\mathcal{D} = \{x_1, ..., x_n\}, x_i \in \mathbb{R}^d$, parameters K

Expected output: K centroids $\{\mu_1,\mu_2,\ldots,\mu_k\},\mu_i\in\mathbb{R}^d$, and K clusters C_1,\ldots,C_K

Input $\mathcal{D} = \{x_1, ..., x_n\}, x_i \in \mathbb{R}^d$, parameters K

Expected output: K centroids $\{\mu_1,\mu_2,...,\mu_k\}, \mu_i \in \mathbb{R}^d$, and K clusters $C_1,...,C_K$

The data assignment procedure:

Input $\mathcal{D} = \{x_1, ..., x_n\}, x_i \in \mathbb{R}^d$, parameters K

Expected output: K centroids $\{\mu_1,\mu_2,...,\mu_k\}, \mu_i \in \mathbb{R}^d$, and K clusters $C_1,...,C_K$

The data assignment procedure:

If we had K centroids, we could split the dataset into K clusters, C_1, \ldots, C_K , by assigning each data point to its nearest centroid

Input
$$\mathcal{D} = \{x_1, ..., x_n\}, x_i \in \mathbb{R}^d$$
, parameters K

Expected output: K centroids $\{\mu_1,\mu_2,\ldots,\mu_k\},\mu_i\in\mathbb{R}^d$, and K clusters C_1,\ldots,C_K

The data assignment procedure:

If we had K centroids, we could split the dataset into K clusters, C_1, \ldots, C_K , by assigning each data point to its nearest centroid

 $C_i = \{x \in \mathcal{D} \text{ s.t.}, \mu_i \text{ is the closest centroid to } x\}$

The data assignment procedure

K centroids μ_1, \ldots, μ_k splits the space into a voronoi diagram

The centroid computation procedure

The centroid computation procedure

If we magically had the clusters C_1, \ldots, C_K , we could compute centroids as follows:

 μ_i : the mean of the data in C_i

Iterate between Centroid computation and Data Assignment!

Iterate between Centroid computation and Data Assignment!

Initialize K clusters $C_1, C_2, ..., C_K$, where $\bigcup_{i=1}^K C_i = \mathcal{D}$, and $C_i \cap C_j = \mathcal{D}$, for $i \neq j$

Iterate between Centroid computation and Data Assignment!

Initialize K clusters $C_1, C_2, ..., C_K$, where $\bigcup_{i=1}^K C_i = \mathcal{D}$, and $C_i \cap C_j = \mathcal{O}$, for $i \neq j$ Repeat until convergence:

Iterate between Centroid computation and Data Assignment!

Initialize K clusters $C_1, C_2, ..., C_K$, where $\bigcup_{i=1}^K C_i = \mathcal{D}$, and $C_i \cap C_j = \mathcal{D}$, for $i \neq j$ Repeat until convergence:

1. centroids computation using C_1, \ldots, C_K , i.e., for all i, $\mu_i = \sum_{x \in C_i} x/|C_i|$ (i.e., the mean of the data in C_i)

Iterate between Centroid computation and Data Assignment!

Initialize K clusters $C_1, C_2, ..., C_K$, where $\bigcup_{i=1}^K C_i = \mathcal{D}$, and $C_i \cap C_j = \emptyset$, for $i \neq j$ Repeat until convergence:

- 1. centroids computation using C_1, \ldots, C_K , i.e., for all i, $\mu_i = \sum_{x \in C_i} x/\|C_i\|$ (i.e., the mean of the data in C_i)
- 2. the data assignment procedure, i.e., re-split data into C_1, \ldots, C_K , using μ_1, \ldots, μ_k

Outline for Today

1. Curse of dimensionality

2. Unsupervised Learning: Clustering and the K-means algorithm

3. Convergence of K-means

Does K-means algorithm converge?

Yes, though it does not guarantee to return the globally optimal solution

Does K-means algorithm converge?

Yes, though it does not guarantee to return the globally optimal solution

Given any K disjoint groups $C_1, C_2, ..., C_K$, and any K centroids, define a loss function:

$$\mathcal{E}(\{C_i\}, \{\mu_i\}) = \sum_{i=1}^K \left[\sum_{x \in C_i} \|x - \mu_i\|_2^2 \right]$$

Does K-means algorithm converge?

Yes, though it does not guarantee to return the globally optimal solution

Given any K disjoint groups C_1, C_2, \ldots, C_K , and any K centroids, define a loss function:

$$\mathcal{E}(\{C_i\}, \{\mu_i\}) = \sum_{i=1}^K \left[\sum_{x \in C_i} ||x - \mu_i||_2^2 \right]$$

Total distance of points in C_i to μ_i

$$\mathcal{E}(\{C_i\}, \{\mu_i\}) = \sum_{i=1}^K \left| \sum_{x \in C_i} ||x - \mu_i||_2^2 \right|$$

$$\mathcal{E}(\{C_i\}, \{\mu_i\}) = \sum_{i=1}^K \left| \sum_{x \in C_i} ||x - \mu_i||_2^2 \right|$$

K-means minimizes ℓ in an alternating fashion:

$$\mathcal{E}(\{C_i\}, \{\mu_i\}) = \sum_{i=1}^K \left| \sum_{x \in C_i} ||x - \mu_i||_2^2 \right|$$

K-means minimizes ℓ in an alternating fashion:

Q1: w/ C_1 , ..., C_K fix, what is arg $\min_{\mu_1,...,\mu_k} \mathcal{E}(\{C_i\},\{\mu_i\})$?

$$\mathcal{E}(\{C_i\}, \{\mu_i\}) = \sum_{i=1}^K \left[\sum_{x \in C_i} \|x - \mu_i\|_2^2 \right]$$

K-means minimizes ℓ in an alternating fashion:

Q1: w/ C_1 , ..., C_K fix, what is arg $\min_{\mu_1,...,\mu_k} \mathcal{E}(\{C_i\}, \{\mu_i\})$?

Q2: w/ $\mu_1, ..., \mu_K$ fix, what is arg $\min_{C_1,...,C_k} \mathcal{C}(\{C_i\}, \{\mu_i\})$?

K means is doing Coordinate Descent here

$$\mathcal{E}(\{C_i\}, \{\mu_i\}) = \sum_{i=1}^K \left[\sum_{x \in C_i} \|x - \mu_i\|_2^2 \right]$$

K-means Algorithm: (re-stated from a different perspective)

Initialize μ_1, \ldots, μ_K

Repeat until convergence:

K means is doing Coordinate Descent here

$$\mathcal{E}(\{C_i\}, \{\mu_i\}) = \sum_{i=1}^K \left[\sum_{x \in C_i} \|x - \mu_i\|_2^2 \right]$$

K-means Algorithm: (re-stated from a different perspective)

Initialize μ_1, \ldots, μ_K

Repeat until convergence:

$$C_1, ..., C_K = \arg\min_{C_1, ..., C_k} \mathcal{E}(\{C_i\}, \{\mu_i\})$$

K means is doing Coordinate Descent here

$$\mathcal{E}(\{C_i\}, \{\mu_i\}) = \sum_{i=1}^K \left[\sum_{x \in C_i} \|x - \mu_i\|_2^2 \right]$$

K-means Algorithm: (re-stated from a different perspective)

Initialize μ_1, \ldots, μ_K

Repeat until convergence:

$$C_{1}, ..., C_{K} = \arg \min_{C_{1}, ..., C_{k}} \ell(\{C_{i}\}, \{\mu_{i}\})$$

$$\mu_{1}, ..., \mu_{K} = \arg \min_{\mu_{1}, ..., \mu_{k}} \ell(\{C_{i}\}, \{\mu_{i}\})$$

Given K, we can look at the minimum loss

$$\mathcal{C}_K := \min_{C_1, \dots, C_K, \mu_1, \dots, \mu_K} \mathcal{C}(\{C_i\}, \{\mu_i\}) = \sum_{i=1}^K \left[\sum_{x \in C_i} \|x - \mu_i\|_2^2 \right]$$

Given K, we can look at the minimum loss

$$\mathcal{C}_K := \min_{C_1, \dots, C_K, \mu_1, \dots, \mu_K} \mathcal{C}(\{C_i\}, \{\mu_i\}) = \sum_{i=1}^K \left[\sum_{x \in C_i} \|x - \mu_i\|_2^2 \right]$$

Note that exactly compute the min is NP-hard, but we can approximate it w/ K-means solutions

Given K, we can look at the minimum loss

$$\mathcal{C}_K := \min_{C_1, \dots, C_K, \mu_1, \dots, \mu_K} \mathcal{C}(\{C_i\}, \{\mu_i\}) = \sum_{i=1}^K \left[\sum_{x \in C_i} ||x - \mu_i||_2^2 \right]$$

Note that exactly compute the min is NP-hard, but we can approximate it w/ K-means solutions

Q: Should we just naively pick a K that the ℓ_K is zero?

Given K, we can look at the minimum loss

$$\mathcal{C}_K := \min_{C_1, \dots, C_K, \mu_1, \dots, \mu_K} \mathcal{C}(\{C_i\}, \{\mu_i\}) = \sum_{i=1}^K \left[\sum_{x \in C_i} \|x - \mu_i\|_2^2 \right]$$

Note that exactly compute the min is NP-hard, but we can approximate it w/ K-means solutions

Q: Should we just naively pick a K that the ℓ_K is zero?

No! When K = n, loss is zero (every data point is a cluster!)

In practice, we can gradually increase K, and keep track the loss \mathcal{C}_K , and stop when \mathcal{C}_K does not drop too much

In practice, we can gradually increase K, and keep track the loss \mathcal{C}_K , and stop when \mathcal{C}_K does not drop too much

Summary

1. Curse of Dimensionality:

Data points in high-dim space tends to spread far from each other

2. The first Unsupervised Learning Algorithm — K means

Coordinate Descent on the loss $\ell(\{C_i\}, \{\mu_i\})$