Curse of Dimensionality
&

Clustering



Announcement:

1. P1 will be out today

2. Office hour today 2-3 pm



Recap

The K-NN algorithm

Example: 3-NN with Euclidean distance on a binary classification data



Recap

Bayes optimal Predictor: y, = h,,,(x) = arg max P(y|x)
yE{—l,l}

Assume x € [—1,1]%, P(x) has support everywhere P(x) > 0,Vx € [-1,1]>,n = o0

Vx € [~ 1,112 : Py # INNQ®)) < 2P(y # b, (x))

n
Key point: K-NN can work well when — is very large.

d



Outline for Today

1. Curse of dimensionality
2. Unsupervised Learning: Clustering and the K-means algorithm

3. Convergence of K-means



Finite sample error rate of 1-NN In high-dimension setting

(Informal result and no proof)

Fix n € N, assume x € [0,1]¢, assume P(y | x) is Lipschitz
continuous with respect to x, i.e., | P(y|x) — P(y |x) | < d(x, x')

Then, we have:

i 1/d
- [1(y # 1NN(X))] < 9) _x,yNP [1()’ ?é hopt(x))] + O ( <_) )

n
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Finite sample error rate of 1-NN In high-dimension setting

(Informal result and no proof)

Fix n € NT, assume x € [0,1]%, assume P(y | x) is Lipschitz
continuous with respect to x, i.e., | P(y|x) — P(y |x) | < d(x, x')

Then, we have:

i 1/d
S [1(y =+ 1NN(X))] <2 —x,y~P ll(y 7 hOPt(x))] + 0O ( (;) )

Q: Assume Bayes optimal has error zero, to make 1-NN'’s error upper bounded by 0.1,
How many samples do we need?

(1/m)V=0.1 = n = (10)"
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Key problem: in high dimensional space, points that are draw from a
distribution tends to be far away from each other!

Example: let us consider uniform distribution over a cube [0,1]¢

Q: sample x uniformly, what is the probability that x
Is inside the small cube?

A: Volume(small cube)/volume([0,1]%) = ld
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Curse of Dimensionality Explanation

Example: let us consider uniform distribution over a cube [0,1]¢

Now assume we sample n points uniform randomly in the big
cube, and we observe K points fall inside the small cube

So empirically, the probability of sampling a
point inside the small cube is roughly K/n

K

Thus, we have ld ~N —
n
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Curse of Dimensionality Explanation

Example: let us consider uniform distribution over a cube [0,1]¢

Q: how large we should set /, s.t., we will

have K examples (out of n) fall inside the
small cube?

|~ (K/In)" > 1, as d - o

Bad news: when d — o0, the K nearest
neighbors will be all over the place!
(Cannot trust them, as they are not nearby
points anymore!)
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In [0,1]¢, we uniformly
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The distance between two sampled points increases as d grows

In [0,1]¢, we uniformly
sample two points x, X/,
calculate
d(x,x’) = [lx — x|,

Let’s plot the
distribution of
such distance:
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Luckily, real world data often has low-dimensional structure!

Example: face images

Bill Gates Arnold Schwarzenegger

gﬁ

Queen Elizabeth Il Dav d Beckham

Data lives in 2-d manifold

Gwyneth Paltrow Angelina Jolie

Michael Jordan
\. ‘

Lj m Original image: | 64°

Next week: we will see
that these faces
approximately live in 100-
d space!
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What is clustering?

It is an unsupervised learning procedure (i.e., applies to data without ground truth labels)

Clitte, 7




Usage of clustering algorithms in real world

Example: Learning to detect cars without ground truth label

p - e v
9 0/ o‘
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A point cloud from a Lidar sweep (4-d data)



Usage of clustering algorithms in real world

Example: Learning to detect cars without ground truth label

., ¥ fi‘ Apply clustering
on this dataset

| ; K § e et >
/\ \%\\\\\ ° .} &

A point cloud from a Lidar sweep (4-d data)

Different color represents different clusters



Usage of clustering algorithms in real world

Example: Learning to detect cars without ground truth label

L

Fitting
bounding box
/b

& around clusters e
é\ C_':y @ * /53

3. Fit Bounding Boxes

O

These boxes are the pseudo-labels we

. Different color represents different clusters
use to train detector
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The K-means algorithm

d

Input D = {x;,...,x,},x; € R% parameters K

d

Expected output: K centroids (i, iy, ..., di t> #; € R and Kclusters C; . ..., Cy

The data assignment procedure:

If we had K centroids, we could split the
dataset into K clusters, C, ..., Cg, by

assigning each data point to its nearest centroid

C.={xe I s.t,u is the closest centroid to x}




The data assignment procedure

K centroids y,, ..., 4; splits the space into a voronoi diagram

fesi?”s




The centroid computation procedure




The centroid computation procedure

If we magically had the clusters Ci, ..., Cg,
we could compute centroids as follows:

i, : the mean of the data in C;
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The K-means algorithm

lterate between Centroid computation and Data Assignment!

Initialize K clusters C, C,, ..., Cg, where Uszl Ci=9,and ;N C; =@, fori #

Repeat until convergence:

1. centroids computation using Cy, ..., Cy, i.e.,for all i,
U = Z x/| C;| (i.e., the mean of the data in C)
xe(C;

2. the data assignment procedure, i.e., re-spilit
data into Cy, ..., Cg, using iy, ..., 4
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ot Clusterins




The K-means algorithm

wa/w/& Cel 7o
ot Clusterins
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Does K-means algorithm converge?

Yes, though it does not guarantee to return the globally optimal solution

Given any K disjoint groups C,, (>, ..., Cg, and any K centroids, define a loss function:

K
£{CH ) = ) ’

=1

/]

Total distance of points in C; to y;
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K-means as a Coordinate Descent Algorithm

K
CACH D =) | D) = will3
=1 | xe(;

K-means minimizes £ in an alternating fashion:

Q1:w/ Cy, ..., Cyfix, what is arg min £({C,}, {4;})?
His-- oM

Q2: W/ Uy, ..., Ui fix, what is arg min £({C.}, {u;})?
Ci.....C;
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K means is doing Coordinate Descent here

£({Ch ) = 2 D Il — i3

=1 xeC,
K-means Algorithm: (re-stated from a different perspective)

Initialize uq, ..., ug
Repeat until convergence;

Ci,...,Cp = arg mlnC c({Cits {ui})

His oo g = arg min (LG, L4;1)
His-- oM
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How to pick K?

Given K, we can look at the minimum loss

K

= min  C{CHL{mD =) | D, llx— w3

Cl,---,CKa,ula'“?luK =1 xeC,
l

Note that exactly compute the min is NP-hard, but we can approximate it w/ K-means
solutions

Q: Should we just naively pick a K that the ' is zero?

No! When K = n, loss is zero (every data point is a cluster!)
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not drop too much



How to pick K?

In practice, we can gradually increase K, and keep track the loss £, and stop when ' does
not drop too much




Summary

1. Curse of Dimensionality:

Data points in high-dim space tends to spread far from each other

2. The first Unsupervised Learning Algorithm — K means

Coordinate Descent on the loss £({ C;}, {i;})



