
Curse of Dimensionality 
&  

Clustering



Announcement:

1. P1 will be out today

2. Office hour today 2-3 pm 



Recap
The K-NN algorithm

Example: 3-NN with Euclidean distance on a binary classification data



Recap

Bayes optimal Predictor: yb = hopt(x) = arg max
y∈{−1,1}

P(y |x)

Assume ,  has support everywhere  , x ∈ [−1,1]2 P(x) P(x) > 0,∀x ∈ [−1,1]2 n → ∞

∀x ∈ [−1,1]2 : ℙ(y ≠ 1NN(x)) ≤ 2ℙ(y ≠ hopt(x))

Key point: K-NN can work well when  is very large. 
n
d



Outline for Today

1. Curse of dimensionality

2. Unsupervised Learning: Clustering and the K-means algorithm

3. Convergence of K-means



Finite sample error rate of 1-NN in high-dimension setting

(Informal result and no proof)

Fix , assume , assume  is Lipschitz 
continuous with respect to , i.e., 

n ∈ ℕ+ x ∈ [0,1]d P(y |x)
x |P(y |x) − P(y |x′￼) | ≤ d(x, x′￼)

Then, we have:

 𝔼x,y∼P [1(y ≠ 1NN(x))] ≤ 2𝔼x,y∼P [1(y ≠ hopt(x))] + O (( 1
n )
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Finite sample error rate of 1-NN in high-dimension setting

(Informal result and no proof)

Fix , assume , assume  is Lipschitz 
continuous with respect to , i.e., 

n ∈ ℕ+ x ∈ [0,1]d P(y |x)
x |P(y |x) − P(y |x′￼) | ≤ d(x, x′￼)

Then, we have:

 𝔼x,y∼P [1(y ≠ 1NN(x))] ≤ 2𝔼x,y∼P [1(y ≠ hopt(x))] + O (( 1
n )

1/d

)
Q: Assume Bayes optimal has error zero, to make 1-NN’s error upper bounded by , 


How many samples do we need?
0.1

(1/n)1/d = 0.1 ⇒ n = (10)d
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Curse of Dimensionality Intuitive Explanation

Key problem: in high dimensional space, points that are draw from a 
distribution tends to be far away from each other! 

Example: let us consider uniform distribution over a cube [0,1]d

Q: sample  uniformly, what is the probability that  
is inside the small cube? 

x x

A:  Volume(small cube)/volume([0,1]d) = ld



Curse of Dimensionality Explanation

Example: let us consider uniform distribution over a cube [0,1]d

Now assume we sample  points uniform randomly in the big 
cube, and we observe  points fall inside the small cube

n
K



Curse of Dimensionality Explanation

Example: let us consider uniform distribution over a cube [0,1]d

Now assume we sample  points uniform randomly in the big 
cube, and we observe  points fall inside the small cube

n
K

So empirically, the probability of sampling a 
point inside the small cube is roughly K/n



Curse of Dimensionality Explanation

Example: let us consider uniform distribution over a cube [0,1]d

Now assume we sample  points uniform randomly in the big 
cube, and we observe  points fall inside the small cube

n
K

So empirically, the probability of sampling a 
point inside the small cube is roughly K/n

ld ≈
K
n

Thus, we have
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Curse of Dimensionality Explanation

Example: let us consider uniform distribution over a cube [0,1]d

ld ≈
K
n

We have Q: how large we should set , s.t., we will 
have K examples (out of n) fall inside the 

small cube? 

l

l ≈ (K/n)1/d → 1, as d → ∞

Bad news: when , the K nearest 
neighbors will be all over the place! 


(Cannot trust them, as they are not nearby 
points anymore!) 

d → ∞
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The distance between two sampled points increases as  growsd

In , we uniformly 
sample two points , 

calculate 
 

[0,1]d

x, x′￼

d(x, x′￼) = ∥x − x′￼∥2

Let’s plot the 
distribution of 
such distance:

Distance increases as d → ∞
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Luckily, real world data often has low-dimensional structure!

Data lives in 2-d manifold

Example: face images

Original image:  ℝ642

Next week: we will see 
that these faces 

approximately live in 100-
d space!
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What is clustering?

It is an unsupervised learning procedure (i.e., applies to data without ground truth labels)



Usage of clustering algorithms in real world

Example: Learning to detect cars without ground truth label

A point cloud from a Lidar sweep (4-d data)
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Usage of clustering algorithms in real world

Example: Learning to detect cars without ground truth label

Different color represents different clusters

Fitting 
bounding box 

around clusters

These boxes are the pseudo-labels we 
use to train detector
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The K-means algorithm

Input , parameters 𝒟 = {x1, …, xn}, xi ∈ ℝd K

Expected output: K centroids , and K clusters {μ1, μ2, …, μk}, μi ∈ ℝd C1 . …, CK

Ci = {x ∈ 𝒟 s.t., μi is the closest centroid to x}

The data assignment procedure:

If we had  centroids, we could split the 
dataset into K clusters, , by 

K
C1, …, CK

assigning each data point to its nearest centroid



The data assignment procedure

 centroids  splits the space into a voronoi diagram K μ1, …, μk



The centroid computation procedure 



The centroid computation procedure 

If we magically had the clusters , 
we could compute centroids as follows:

C1, …, CK

 the mean of the data in μi : Ci
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The K-means algorithm

Initialize K clusters C1, C2, …, CK,  where  ∪K
i=1 Ci = 𝒟,  and Ci ∩ Cj = ∅, for i ≠ j

2. the data assignment procedure, i.e., re-split 
data into using C1, …, CK, μ1, …, μk

1. centroids computation using , i.e.,for all i, 

 (i.e., the mean of the data in )

C1, …, CK
μi = ∑

x∈Ci

x/ |Ci | Ci

Repeat until convergence:

Iterate between Centroid computation and Data Assignment!
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The K-means algorithm

….
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Does K-means algorithm converge?

Yes, though it does not guarantee to return the globally optimal solution

Given any K disjoint groups , and any K centroids, define a loss function: C1, C2, …, CK

ℓ({Ci}, {μi}) =
K

∑
i=1

∑
x∈Ci

∥x − μi∥2
2

Total distance of points in  to Ci μi
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Q2: w/  fix, what is ? μ1, …, μK arg min
C1,…,Ck

ℓ({Ci}, {μi})
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Repeat until convergence:
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How to pick K? 

ℓK := min
C1,…,CK,μ1,…,μK

ℓ({Ci}, {μi}) =
K

∑
i=1

∑
x∈Ci

∥x − μi∥2
2

Given ,  we can look at the minimum lossK

Q: Should we just naively pick a K that the  is zero? ℓK

No! When , loss is zero (every data point is a cluster!)K = n

Note that exactly compute the  is NP-hard, but we can approximate it w/ K-means 
solutions

min
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How to pick K? 
In practice, we can gradually increase K, and keep track the loss , and stop when  does 

not drop too much
ℓK ℓK



Summary

1. Curse of Dimensionality: 

Data points in high-dim space tends to spread far from each other

2. The first Unsupervised Learning Algorithm — K means

Coordinate Descent on the loss ℓ({Ci}, {μi})


