Boosting

Announcements

Construct
$$\hat{P}$$
, s.t., $\hat{P}(x_i, y_i) = 1/n, \forall i \in [n]$

Construct \hat{P} , s.t., $\hat{P}(x_i, y_i) = 1/n, \forall i \in [n]$

Construct \hat{P} , s.t., $\hat{P}(x_i, y_i) = 1/n, \forall i \in [n]$

$$\mathcal{D}_1 \qquad \mathcal{D}_2 \qquad \cdots \qquad \mathcal{D}_m$$

$$\hat{h}_1 = \mathsf{ID3}(\mathcal{D}_1) \qquad \hat{h}_2 = \mathsf{ID3}(\mathcal{D}_2) \qquad \qquad \hat{h}_m = \mathsf{ID3}(\mathcal{D}_m)$$

Construct \hat{P} , s.t., $\hat{P}(x_i, y_i) = 1/n, \forall i \in [n]$

Outline of Today

1. Gradient Descent without accurate gradient

2. Boosting as Approximate Gradient Descent

3. Example: the AdaBoost Algorithm

Consider minimizing the following function $L(y), y \in \mathbb{R}^n$

Consider minimizing the following function $L(y), y \in \mathbb{R}^n$

Gradient descent:

$$y_{t+1} = y_t - \eta g_t$$
, where $g_t = \nabla L(y_t)$

Consider minimizing the following function $L(y), y \in \mathbb{R}^n$

Gradient descent:

$$y_{t+1} = y_t - \eta g_t$$
, where $g_t = \nabla L(y_t)$

When η is small and $g_t \neq 0$, we know $L(y_{t+1}) < L(y_t)$

Consider minimizing the following function $L(y), y \in \mathbb{R}^n$

Approximate Gradient descent:

$$y_{t+1} = y_t - \eta \hat{g}_t$$
, where $\hat{g}_t \neq \nabla L(y_t)$

Consider minimizing the following function $L(y), y \in \mathbb{R}^n$

Approximate Gradient descent:

$$y_{t+1} = y_t - \eta \hat{g}_t$$
, where $\hat{g}_t \neq \nabla L(y_t)$

Q: Under what condition of \hat{g}_t , can we still guarantee $L(y_{t+1}) < L(y_t)$?

Consider minimizing the following function $L(y), y \in \mathbb{R}^n$

Approximate Gradient descent:

$$y_{t+1} = y_t - \eta \hat{g}_t$$
, where $\hat{g}_t \neq \nabla L(y_t)$

Q: Under what condition of \hat{g}_t , can we still guarantee $L(y_{t+1}) < L(y_t)$?

A: As long as
$$\langle \hat{g}_t, \nabla L(y_t) \rangle > 0$$

$$y_{t+1} = y_t - \eta \hat{g}_t$$
, where $\hat{g}_t \neq \nabla L(y_t)$
 $\vdots = g_t$

$$y_{t+1} = y_t - \eta \hat{g}_t$$
, where $\hat{g}_t \neq \nabla L(y_t)$
 $\vdots = g_t$

$$y_{t+1} = y_t - \eta \hat{g}_t$$
, where $\hat{g}_t \neq \nabla L(y_t)$
 $\vdots = g_t$

$$y_{t+1} = y_t - \eta \hat{g}_t$$
, where $\hat{g}_t \neq \nabla L(y_t)$
 $\vdots = g_t$

$$y_{t+1} = y_t - \eta \hat{g}_t$$
, where $\hat{g}_t \neq \nabla L(y_t)$
 $\vdots = g_t$

$$y_{t+1} = y_t - \eta \hat{g}_t$$
, where $\hat{g}_t \neq \nabla L(y_t)$

$$= g_t$$

$$y_{t+1} = y_t - \eta \hat{g}_t$$
, where $\hat{g}_t \neq \nabla L(y_t)$
 $\vdots = g_t$

$$y_{t+1} = y_t - \eta \hat{g}_t$$
, where $\hat{g}_t \neq \nabla L(y_t)$

$$= g_t$$

Prove this via first order Taylor expansion and the fact that $\hat{g}_t^T g_t > 0$

$$\hat{g}_t^{\perp} \qquad \hat{g}_t \qquad \hat{g}_t$$

$$\hat{g}_t = \hat{g}_t'' + \hat{g}_t^{\perp}$$

$$\hat{g}_t'' = (\hat{g}_t^{\top} g_t) \frac{g_t}{\|g_t\|_2} = \alpha g_t$$

$$y_{t+1} = y_t - \eta \hat{g}_t$$
, where $\hat{g}_t \neq \nabla L(y_t)$

$$= g_t$$

Prove this via first order Taylor expansion and the fact that $\hat{g}_{t}^{T}g_{t} > 0$

that
$$\hat{g}_t^{\intercal} g_t > 0$$

$$\hat{g}_t^{\perp} \hat{g}_t$$

$$\hat{g}_t = \hat{g}_t'' + \hat{g}_t^{\perp}$$

$$\hat{g}_t'' = (\hat{g}_t^{\intercal} g_t) \frac{g_t}{\|g_t\|_2} = \alpha g_t$$

$$y_{t+1} = y_t - \eta \hat{g}_t$$
, where $\hat{g}_t \neq \nabla L(y_t)$

$$= \underbrace{\nabla L(y_t)}_{:=g_t}$$

Prove this via first order Taylor expansion and the fact that $\hat{g}_t^{\mathsf{T}} g_t > 0$

$$L(y_{t+1}) \approx L(y_t) - \eta g_t^{\mathsf{T}} \hat{g}_t$$

$$= L(y_t) - \eta g_t^{\mathsf{T}} (\alpha g_t + \hat{g}_t^{\perp})$$

$$\hat{g}_t^{\perp} \qquad \hat{g}_t \qquad \hat{g}_t$$

$$\hat{g}_t = \hat{g}_t'' + \hat{g}_t^{\perp}$$

$$\hat{g}_t'' = (\hat{g}_t^{\mathsf{T}} g_t) \frac{g_t}{\|g_t\|_2} = \alpha g_t$$

$$y_{t+1} = y_t - \eta \hat{g}_t$$
, where $\hat{g}_t \neq \nabla L(y_t)$

$$= g_t$$

Prove this via first order Taylor expansion and the fact that $\hat{g}_t^T g_t > 0$

$$L(y_{t+1}) \approx L(y_t) - \eta g_t^{\mathsf{T}} \hat{g}_t$$

$$= L(y_t) - \eta g_t^{\mathsf{T}} (\alpha g_t + \hat{g}_t^{\mathsf{L}})$$

$$= L(y_t) - (\eta \alpha) g_t^{\mathsf{T}} g_t$$

$$\hat{g}_t^{\perp} \qquad \hat{g}_t \qquad \hat{g}_t \qquad \hat{g}_t$$

$$\hat{g}_t = \hat{g}_t'' + \hat{g}_t^{\perp}$$

$$\hat{g}_t'' = (\hat{g}_t^{\top} g_t) \frac{g_t}{\|g_t\|_2} = \alpha g_t$$

$$y_{t+1} = y_t - \eta \hat{g}_t$$
, where $\hat{g}_t \neq \nabla L(y_t)$

$$= g_t$$

Prove this via first order Taylor expansion and the fact that $\hat{g}_t^T g_t > 0$

$$L(y_{t+1}) \approx L(y_t) - \eta g_t^{\mathsf{T}} \hat{g}_t$$

$$= L(y_t) - \eta g_t^{\mathsf{T}} (\alpha g_t + \hat{g}_t^{\perp})$$

$$= L(y_t) - (\eta \alpha) g_t^{\mathsf{T}} g_t$$
Positive since $\alpha > 0$

$$\hat{g}_t^{\perp} \qquad \hat{g}_t \qquad \hat{g}_t$$

$$\hat{g}_t = \hat{g}_t'' + \hat{g}_t^{\perp}$$

$$\hat{g}_t'' = (\hat{g}_t^{\top} g_t) \frac{g_t}{\|g_t\|_2} = \alpha g_t$$

Outline of Today

1. Gradient Descent without accurate gradient

2. Boosting as Approximate Gradient Descent

3. Example: the AdaBoost Algorithm

Key question that Boosting answers:

Can weak learners be combined together to generate a strong learner with low bias?

(Weak learners: classifiers whose accuracy is slightly above 50%)

Setup

We have a binary classification data $\mathcal{D} = \{x_i, y_i\}_{i=1}^n, (x_i, y_i) \sim P$

Hypothesis class \mathcal{H} , hypothesis $h: X \mapsto \{-1, +1\}$

Setup

We have a binary classification data $\mathcal{D} = \{x_i, y_i\}_{i=1}^n, (x_i, y_i) \sim P$

Hypothesis class \mathcal{H} , hypothesis $h: X \mapsto \{-1, +1\}$

Loss function $\ell(h(x), y)$, e.g., exponential loss $\exp(-yh(x))$

Setup

We have a binary classification data $\mathcal{D} = \{x_i, y_i\}_{i=1}^n, (x_i, y_i) \sim P$

Hypothesis class \mathcal{H} , hypothesis $h: X \mapsto \{-1, +1\}$

Loss function $\ell(h(x), y)$, e.g., exponential loss $\exp(-yh(x))$

Goal: learn an ensemble
$$H(x) = \sum_{t=1}^{I} \alpha_t h_t(x)$$
, where $h_t \in \mathcal{H}$

The Boosting Algorithm

Initialize $H_1=h_1\in \mathcal{H}$

For t = 1 ...

Find a new classifier h_{t+1} , s.t., $H_{t+1} = H_t + \alpha h_{t+1}$ has smaller training error

Denote
$$\hat{\mathbf{y}} = \left[H_t(x_1), H_t(x_2), \dots, H_t(x_n) \right]^{\mathsf{T}} \in \mathbb{R}^n$$

Denote
$$\hat{\mathbf{y}} = \begin{bmatrix} H_t(x_1), H_t(x_2), \dots, H_t(x_n) \end{bmatrix}^{\mathsf{T}} \in \mathbb{R}^n$$
Define $L(\hat{\mathbf{y}}) = \sum_{i=1}^n \ell(\hat{y}_i, y_i)$, where $\hat{y}_i = H_t(x_i)$

Denote
$$\hat{\mathbf{y}} = \left[H_t(x_1), H_t(x_2), \dots, H_t(x_n) \right]^{\mathsf{T}} \in \mathbb{R}^n$$

Define
$$L(\hat{\mathbf{y}}) = \sum_{i=1}^{n} \ell(\hat{y}_i, y_i)$$
, where $\hat{y}_i = H_t(x_i)$

 $L(\hat{\mathbf{y}})$: the total training loss of ensemble H_t

Denote
$$\hat{\mathbf{y}} = \left[H_t(x_1), H_t(x_2), \dots, H_t(x_n) \right]^{\mathsf{T}} \in \mathbb{R}^n$$

Define
$$L(\hat{\mathbf{y}}) = \sum_{i=1}^{n} \mathcal{C}(\hat{y}_i, y_i)$$
, where $\hat{y}_i = H_t(x_i)$

 $L(\hat{\mathbf{y}})$: the total training loss of ensemble H_t

Q: To minimize $L(\hat{y})$, cannot we just do GD on \hat{y} directly?

Denote
$$\hat{\mathbf{y}} = \left[H_t(x_1), H_t(x_2), \dots, H_t(x_n) \right]^{\mathsf{T}} \in \mathbb{R}^n$$

Define
$$L(\hat{\mathbf{y}}) = \sum_{i=1}^{n} \mathcal{E}(\hat{y}_i, y_i)$$
, where $\hat{y}_i = H_t(x_i)$

 $L(\hat{\mathbf{y}})$: the total training loss of ensemble H_t

Q: To minimize $L(\hat{\mathbf{y}})$, cannot we just do GD on $\hat{\mathbf{y}}$ directly?

A: no, we want find $\hat{\mathbf{y}}$ that minimizes L, but it needs to be from some ensemble H

Denote
$$\hat{\mathbf{y}} = \left[H_t(x_1), H_t(x_2), \dots, H_t(x_n) \right]^{\mathsf{T}} \in \mathbb{R}^n$$

Define
$$L(\hat{\mathbf{y}}) = \sum_{i=1}^{n} \mathcal{C}(\hat{y}_i, y_i)$$
, where $\hat{y}_i = H_t(x_i)$

Let us compute $\nabla L(\hat{\mathbf{y}}) \in \mathbb{R}^n$ — the ideal descent direction

Denote
$$\hat{\mathbf{y}} = \left[H_t(x_1), H_t(x_2), \dots, H_t(x_n) \right]^{\mathsf{T}} \in \mathbb{R}^n$$

Define
$$L(\hat{\mathbf{y}}) = \sum_{i=1}^{n} \mathcal{C}(\hat{y}_i, y_i)$$
, where $\hat{y}_i = H_t(x_i)$

Let us compute $\nabla L(\hat{\mathbf{y}}) \in \mathbb{R}^n$ — the ideal descent direction

Denote
$$\hat{\mathbf{y}} = \left[H_t(x_1), H_t(x_2), \dots, H_t(x_n) \right]^{\mathsf{T}} \in \mathbb{R}^n$$

Define
$$L(\hat{\mathbf{y}}) = \sum_{i=1}^{n} \mathcal{E}(\hat{y}_i, y_i)$$
, where $\hat{y}_i = H_t(x_i)$

Let us compute $\nabla L(\hat{\mathbf{y}}) \in \mathbb{R}^n$ — the ideal descent direction

learners
$$-\nabla L(\hat{\mathbf{y}}) = [-\frac{\partial \ell(\hat{\mathbf{y}}_i, \mathbf{y}_i)}{\partial \hat{\mathbf{y}}_i}, ..., -\frac{\partial \ell(\hat{\mathbf{y}}_n, \mathbf{y}_n)}{\partial \hat{\mathbf{y}}_n}]^{\mathsf{T}}$$

$$\hat{\mathbf{y}} \leftarrow \hat{\mathbf{y}} \leftarrow \hat{$$

$$\arg\min_{h\in\mathcal{H}}\sum_{i=1}^{n}h(x_{i})\cdot\frac{\partial\ell(\hat{y}_{i},y_{i})}{\partial\hat{y}_{i}}$$
:=w_i

$$\arg \min_{h \in \mathcal{H}} \sum_{i=1}^{n} h(x_i) \cdot \frac{\partial \ell(\hat{y}_i, y_i)}{\partial \hat{y}_i}$$

$$= \arg\min_{h \in \mathcal{H}} \sum_{i=1}^{n} |w_i| \left(h(x_i) \cdot \operatorname{sign}(w_i) \right)$$

$$h(x_i) \cdot sign(w_i)$$

$$= \int 1 \quad \forall h(x_i) = s \cdot gn(w_i)$$

$$-\nabla L(\hat{\mathbf{y}}) = [-\frac{\partial \ell(\hat{\mathbf{y}}_i, \mathbf{y}_i)}{\partial \hat{\mathbf{y}}_i}, \dots, -\frac{\partial \ell(\hat{\mathbf{y}}_n, \mathbf{y}_n)}{\partial \hat{\mathbf{y}}_n}]^{\mathsf{T}}$$

$$\arg\min_{h\in\mathcal{H}}\sum_{i=1}^{n}h(x_{i})\cdot\frac{\partial\ell(\hat{y}_{i},y_{i})}{\partial\hat{y}_{i}}$$

$$= \arg\min_{h \in \mathcal{H}} \sum_{i=1}^{n} |w_i| \left(h(x_i) \cdot \operatorname{sign}(w_i) \right)$$

$$= \arg\min_{h \in \mathcal{H}} \sum_{i=1}^{n} |w_i| \left(\mathbf{1}(h(x_i) = \operatorname{sign}(w_i)) - \mathbf{1}(h(x_i) \neq \operatorname{sign}(w_i)) \right)$$

$$-\nabla L(\hat{\mathbf{y}}) = [-\frac{\partial \ell(\hat{\mathbf{y}}_i, \mathbf{y}_i)}{\partial \hat{\mathbf{y}}_i}, ..., -\frac{\partial \ell(\hat{\mathbf{y}}_n, \mathbf{y}_n)}{\partial \hat{\mathbf{y}}_n}]^{\mathsf{T}}$$

$$= 1 - 1(h(\mathbf{x}_i) = \operatorname{Skea}(\mathbf{w}_i))$$

$$\arg\min_{h\in\mathcal{H}}\sum_{i=1}^{n}h(x_i)\cdot\frac{\partial \mathcal{E}(\hat{y}_i,y_i)}{\partial \hat{y}_i}$$

$$= \arg\min_{h \in \mathcal{H}} \sum_{i=1}^{n} |w_i| \left(h(x_i) \cdot \operatorname{sign}(w_i) \right)$$

$$= \arg\min_{h \in \mathcal{H}} \sum_{i=1}^{n} |w_i| \left(\mathbf{1}(h(x_i) = \operatorname{sign}(w_i)) - \mathbf{1}(h(x_i) \neq \operatorname{sign}(w_i)) \right)$$

$$= \arg\min_{h \in \mathcal{H}} \sum_{i=1}^{n} |w_i| \left(\mathbf{I}(h(x_i) - \operatorname{sign}(w_i)) - \mathbf{I}(h(x_i) + \operatorname{sign}(w_i)) \right)$$

$$= \arg\min_{h \in \mathcal{H}} \sum_{i=1}^{n} |w_i| \cdot \left(\mathbf{I}(h(x_i) - \operatorname{sign}(w_i)) - \mathbf{I}(h(x_i) + \operatorname{sign}(w_i)) \right)$$

$$1\left(h(x)\right) + -sign(\omega_{v})$$

$$\arg\min_{h\in\mathcal{H}}\sum_{i=1}^{n}h(x_{i})\cdot\frac{\partial \mathcal{E}(\hat{y}_{i},y_{i})}{\partial \hat{y}_{i}}$$

$$\sum_{i=1}^{n} h(x_i) \cdot \frac{\partial \ell(\hat{y}_i, y_i)}{\partial \hat{y}_i}$$

$$= w_i$$

$$= \arg\min_{h \in \mathcal{H}} \sum_{i=1}^{n} |w_i| \left(h(x_i) \cdot \operatorname{sign}(w_i) \right)$$

$$= \arg\min_{h \in \mathcal{H}} \sum_{i=1}^{n} |w_i| \left(\mathbf{1}(h(x_i) = \operatorname{sign}(w_i)) - \mathbf{1}(h(x_i) \neq \operatorname{sign}(w_i)) \right)$$

$$= \arg\min_{h \in \mathcal{H}} \sum_{i=1}^{n} |w_i| \cdot \mathbf{1}(h(x_i) = \operatorname{sign}(w_i)) = \arg\min_{h \in \mathcal{H}} \sum_{i=1}^{n} |w_i| \cdot \mathbf{1}(h(x_i) \neq -\operatorname{sign}(w_i))$$

$$\arg\min_{h\in\mathcal{H}}\sum_{i=1}^{n}h(x_{i})\cdot\frac{\partial\ell(\hat{y}_{i},y_{i})}{\partial\hat{y}_{i}}$$

$$= \arg\min_{h \in \mathcal{H}} \sum_{i=1}^{n} |w_i| \left(h(x_i) \cdot \operatorname{sign}(w_i) \right)$$

$$= \arg\min_{h \in \mathcal{H}} \sum_{i=1}^{n} |w_i| (h(x_i) \cdot \operatorname{sign}(w_i))$$

$$= \underset{h \in \mathcal{H}}{\min} \sum_{i=1}^{n} |w_i| (h(x_i) \cdot \text{Sign}(w_i))$$

$$= \arg\min_{h \in \mathcal{H}} \sum_{i=1}^{n} |w_i| \left(\mathbf{1}(h(x_i) = \operatorname{sign}(w_i)) - \mathbf{1}(h(x_i) \neq \operatorname{sign}(w_i)) \right)$$
 classification problem!
$$= \arg\min_{h \in \mathcal{H}} \sum_{i=1}^{n} |w_i| \cdot \mathbf{1}(h(x_i) = \operatorname{sign}(w_i)) = \arg\min_{h \in \mathcal{H}} \sum_{i=1}^{n} |w_i| \cdot \mathbf{1}(h(x_i) \neq -\operatorname{sign}(w_i))$$

Turned it to a weighted classification problem!

Finding $[h(x_1), ..., h(x_n)]^{\mathsf{T}}$ that is close to $-\nabla L(\hat{\mathbf{y}})$ can be done via weighted binary classification:

Finding $[h(x_1), ..., h(x_n)]^{\top}$ that is close to $-\nabla L(\hat{\mathbf{y}})$ can be done via weighted binary classification:

$$\{p_i, x_i, -\text{sign}(w_i)\}, \text{ where } p_i = |w_i| / \sum_{j=1}^n |w_i|$$

Finding $[h(x_1), ..., h(x_n)]^{\top}$ that is close to $-\nabla L(\hat{\mathbf{y}})$ can be done via weighted binary classification:

$$\{p_i, x_i, -\operatorname{sign}(w_i)\}, \text{ where } p_i = |w_i| / \sum_{j=1}^n |w_i|$$

$$h_{t+1} := \arg\min_{h \in \mathcal{H}} \sum_{i=1}^{n} p_i \cdot \mathbf{1}(h(x_i) \neq -\operatorname{sign}(w_i))$$

Finding $[h(x_1), ..., h(x_n)]^{\mathsf{T}}$ that is close to $-\nabla L(\hat{\mathbf{y}})$ can be done via weighted binary classification:

$$\{p_i, x_i, -\text{sign}(w_i)\}, \text{ where } p_i = |w_i| / \sum_{j=1}^n |w_i|$$

$$h_{t+1} := \arg\min_{h \in \mathcal{H}} \sum_{i=1}^{n} p_i \cdot \mathbf{1}(h(x_i) \neq -\operatorname{sign}(w_i))$$

Finding $[h(x_1), ..., h(x_n)]^{\top}$ that is close to $-\nabla L(\hat{\mathbf{y}})$ can be done via weighted binary classification:

$$\{p_i, x_i, -\text{sign}(w_i)\}, \text{ where } p_i = |w_i| / \sum_{j=1}^n |w_i|$$

$$h_{t+1} := \arg\min_{h \in \mathcal{H}} \sum_{i=1}^{n} p_i \cdot \mathbf{1}(h(x_i) \neq -\operatorname{sign}(w_i))$$

Finding $[h(x_1), ..., h(x_n)]^{\mathsf{T}}$ that is close to $-\nabla L(\hat{\mathbf{y}})$ can be done via weighted binary classification:

$$\begin{aligned} \{p_i, x_i, -\operatorname{sign}(w_i)\}, & \text{ where } p_i = |w_i| / \sum_{j=1}^n |w_i| \\ h_{t+1} := \arg\min_{h \in \mathcal{H}} \sum_{i=1}^n p_i \cdot \mathbf{1}(h(x_i) \neq -\operatorname{sign}(w_i)) \end{aligned}$$

Finding $[h(x_1), ..., h(x_n)]^{\mathsf{T}}$ that is close to $-\nabla L(\hat{\mathbf{y}})$ can be done via weighted binary classification:

$$\begin{aligned} \{p_i, x_i, -\operatorname{sign}(w_i)\}, & \text{ where } p_i = |w_i| / \sum_{j=1}^n |w_i| \\ h_{t+1} := \arg\min_{h \in \mathcal{H}} \sum_{i=1}^n p_i \cdot \mathbf{1}(h(x_i) \neq -\operatorname{sign}(w_i)) \end{aligned}$$

Initialize $H_1=h_1\in \mathcal{H}$

Initialize
$$H_1 = h_1 \in \mathcal{H}$$

Compute
$$\hat{y}_i = H_t(x_i), \forall i \in [n]$$

Initialize
$$H_1=h_1\in\mathcal{H}$$

Compute
$$\hat{y}_i = H_t(x_i), \forall i \in [n]$$

Compute
$$w_i := \partial \mathcal{E}(\hat{y}_i, y_i)/\partial \hat{y}_i$$
, and normalize $p_i = |w_i|/\sum_j |w_j|$, $\forall i$

Initialize
$$H_1 = h_1 \in \mathcal{H}$$

Compute
$$\hat{y}_i = H_t(x_i), \forall i \in [n]$$

Compute
$$w_i := \partial \mathcal{E}(\hat{y}_i, y_i)/\partial \hat{y}_i$$
, and normalize $p_i = |w_i|/\sum_j |w_j|, \forall i$

Run classification:
$$h_{t+1} = \arg\min \sum_{i=1}^{n} p_i \cdot \mathbf{1}(h(x_i) \neq -\operatorname{sign}(w_i))$$

Initialize
$$H_1 = h_1 \in \mathcal{H}$$

For $t = 1 \dots$

Compute
$$\hat{y}_i = H_t(x_i), \forall i \in [n]$$

Compute
$$\hat{y}_i = H_t(x_i), \forall i \in [n]$$
Compute $w_i := \partial \mathcal{E}(\hat{y}_i, y_i)/\partial \hat{y}_i$, and normalize $p_i = |w_i|/\sum_j |w_j|, \forall i$

Run classification:
$$h_{t+1} = \arg\min \sum_{i=1}^{n} p_i \cdot \mathbf{1}(h(x_i) \neq -\operatorname{sign}(w_i))$$

Add
$$h_{t+1}$$
: $H_{t+1} = H_t + \alpha h_{t+1}$

 $\text{Initialize}\, H_1 = h_1 \in \mathcal{H}$

For t = 1 ...

Compute
$$\hat{y}_i = H_t(x_i), \forall i \in [n]$$

 $\arg \max_{h \in \mathcal{H}} (-\nabla L(\hat{\mathbf{y}}))^{\top} \begin{bmatrix} h(x_1) \\ h(x_2) \\ \cdots \\ h(x_n) \end{bmatrix}$

 $-\nabla L(\hat{\mathbf{v}})$

Compute
$$w_i := \partial \ell(\hat{y}_i, y_i) / \partial \hat{y}_i$$
, and normalize $p_i = |w_i| / \sum_i |w_j|, \forall i$

Run classification:
$$h_{t+1} = \arg\min \sum_{i=1}^{n} p_i \cdot \mathbf{1}(h(x_i) \neq -\operatorname{sign}(w_i))$$

Add
$$h_{t+1}$$
: $H_{t+1} = H_t + \alpha h_{t+1}$

Outline of Today

1. Gradient Descent without accurate gradient

2. Boosting as Approximate Gradient Descent

3. Example: the AdaBoost Algorithm

$$\frac{2l(\vec{y}, y)}{2\hat{y}'} = -y_i \exp(-y_i \hat{y}'_i)$$

$$w_{i} = \partial \mathcal{E}(\hat{y}_{i}, y_{i}) / \partial \hat{y}_{i} = -\exp(\hat{y}_{i} y_{i}) y_{i}$$

$$\hat{y}_{i} = -\exp(\hat{y}_{i} y_{i}) y_{i}$$

$$w_i = \partial \ell(\hat{y}_i, y_i) / \partial \hat{y}_i = -\exp(\hat{y}_i y_i) y_i$$
$$|w_i| = \exp(-\hat{y}_i y_i) \quad p_i = |w_i| / \sum_j |w_j|$$

$$\begin{aligned} w_i &= \partial \ell(\hat{y}_i, y_i) / \partial \hat{y}_i = -\exp(\hat{y}_i y_i) y_i \\ |w_i| &= \exp(-\hat{y}_i y_i) \quad p_i = |w_i| / \sum_j |w_j| \\ h_{t+1} &= \arg\min_{h \in \mathcal{H}} \sum_{i=1}^n p_i \mathbf{1}(h(x_i) \neq -\operatorname{sign}(w_i)) \\ &= -\operatorname{sign}(\psi_i) + \operatorname{sign}(\psi_i) + \operatorname{sign}(\psi_i)$$

$$\begin{aligned} w_i &= \partial \mathcal{E}(\hat{y}_i, y_i) / \partial \hat{y}_i = -\exp(\hat{y}_i y_i) y_i \\ |w_i| &= \exp(-\hat{y}_i y_i) \quad p_i = |w_i| / \sum_j |w_j| \\ h_{t+1} &= \arg\min_{h \in \mathcal{H}} \sum_{i=1}^n p_i \mathbf{1}(h(x_i) \neq -\operatorname{sign}(w_i)) \\ &= \arg\min_{h \in \mathcal{H}} \sum_{i=1}^n p_i \cdot \mathbf{1}(h(x_i) \neq y_i) \end{aligned}$$

We will choose the exponential loss, i.e., $\ell(\hat{y}, y) = \exp(-y \cdot \hat{y})$

$$\begin{aligned} w_i &= \partial \mathcal{E}(\hat{y}_i, y_i) / \partial \hat{y}_i = -\exp(\hat{y}_i y_i) y_i \\ |w_i| &= \exp(-\hat{y}_i y_i) \quad p_i = |w_i| / \sum_j |w_j| \\ h_{t+1} &= \arg\min_{h \in \mathcal{H}} \sum_{i=1}^n p_i \mathbf{1}(h(x_i) \neq -\operatorname{sign}(w_i)) \\ &= \arg\min_{h \in \mathcal{H}} \sum_{i=1}^n p_i \cdot \mathbf{1}(h(x_i) \neq y_i) \end{aligned}$$

Binary classification on weighted data

$$\widetilde{\mathcal{D}} = \{p_i, x_i, y_i\}, \text{ where } \sum_i p_i = 1, p_i \ge 0, \forall i$$

We will choose the exponential loss, i.e., $\ell(\hat{y}, y) = \exp(-y \cdot \hat{y})$

$$w_i = \partial \mathcal{E}(\hat{y}_i, y_i) / \partial \hat{y}_i = -\exp(\hat{y}_i y_i) y_i$$

$$|w_i| = \exp(-\hat{y}_i y_i)$$
 $p_i = |w_i| / \sum_j |w_j|$

$$h_{t+1} = \arg\min_{h \in \mathcal{H}} \sum_{i=1}^{n} p_i \mathbf{1}(h(x_i) \neq -\operatorname{sign}(w_i))$$

$$= \arg\min_{h \in \mathcal{H}} \sum_{i=1}^{n} p_i \cdot \mathbf{1}(h(x_i) \neq y_i)$$

Binary classification on weighted data

$$\widetilde{\mathcal{D}} = \{p_i, x_i, y_i\}, \text{ where } \sum_i p_i = 1, p_i \ge 0, \forall i$$

Q: what does it mean if p_i is large?

Compute learning rate

Select the best learning rate α

$$h_{t+1} = \arg\min_{h \in \mathcal{H}} \sum_{i=1}^{n} p_i \cdot \mathbf{1}(h(x_i) \neq y_i)$$
 $H_{t+1} = H_t + \alpha h_{t+1}$

Compute learning rate

Select the best learning rate α

$$h_{t+1} = \arg\min_{h \in \mathcal{H}} \sum_{i=1}^{n} p_i \cdot \mathbf{1}(h(x_i) \neq y_i)$$
 $H_{t+1} = H_t + \alpha h_{t+1}$

Find the best learning rate via optimization:

$$\arg\min_{\alpha>0} \sum_{i=1}^{n} \mathcal{E}(H_t(x_i) + \alpha h_{t+1}(x_i), y_i)$$

Compute learning rate

Select the best learning rate α

$$h_{t+1} = \arg\min_{h \in \mathcal{H}} \sum_{i=1}^{n} p_i \cdot \mathbf{1}(h(x_i) \neq y_i)$$
 $H_{t+1} = H_t + \alpha h_{t+1}$

Find the best learning rate via optimization:

$$\arg\min_{\alpha>0} \sum_{i=1}^{n} \mathcal{E}(H_t(x_i) + \alpha h_{t+1}(x_i), y_i)$$

Compute the derivative wrt α , set it to zero, and solve for α

Initialize $H_1 = h_1 \in \mathcal{H}$

Initialize
$$H_1 = h_1 \in \mathcal{H}$$

Initialize
$$H_1 = h_1 \in \mathcal{H}$$

For $t = 1 \dots$

Compute
$$w_i = -y_i \exp(-H_t(x_i)y_i)$$
, and normalize $p_i = |w_i| / \sum_j |w_j|$, $\forall i$ Run classification: $h_{t+1} = \arg\min_{h \in \mathcal{H}} \sum_{i=1}^n p_i \cdot \mathbf{1}(h(x_i) \neq y_i)$

Run classification:
$$h_{t+1} = \arg\min_{h \in \mathcal{H}} \sum_{i=1}^{\infty} p_i \cdot \mathbf{1}(h(x_i) \neq y_i)$$

Initialize
$$H_1 = h_1 \in \mathcal{H}$$

For $t = 1 \dots$

Compute
$$w_i = -y_i \exp(-H_t(x_i)y_i)$$
, and normalize $p_i = |w_i| / \sum_j |w_j|$, $\forall i$

Run classification:
$$h_{t+1} = \arg\min_{h \in \mathcal{H}} \sum_{i=1}^{n} p_i \cdot \mathbf{1}(h(x_i) \neq y_i)$$

Weak learner's loss
$$\epsilon = \sum_{i:y_i \neq h_{h+1}(x_i)}^{n} p_i$$

Initialize
$$H_1 = h_1 \in \mathcal{H}$$

Compute
$$w_i = -y_i \exp(-H_t(x_i)y_i)$$
, and normalize $p_i = |w_i| / \sum_j |w_j|$, $\forall i$

Run classification:
$$h_{t+1} = \arg\min_{h \in \mathcal{H}} \sum_{i=1}^{n} p_i \cdot \mathbf{1}(h(x_i) \neq y_i)$$

Weak learner's loss
$$\epsilon = \sum_{i:v \neq h_{t+1}(x_i)}^{n} p_i$$
 // total weight of examples where h_{t+1} made a mistake

Initialize
$$H_1 = h_1 \in \mathcal{H}$$

For $t = 1 \dots$

Compute
$$w_i = -y_i \exp(-H_t(x_i)y_i)$$
, and normalize $p_i = |w_i| / \sum_j |w_j|, \forall i$

Run classification:
$$h_{t+1} = \arg\min_{h \in \mathcal{H}} \sum_{i=1}^{n} p_i \cdot \mathbf{1}(h(x_i) \neq y_i)$$

Weak learner's loss
$$\epsilon = \sum_{i:v_i \neq h_{t+1}(x_i)}^n p_i$$
 // total weight of examples where h_{t+1} made a mistake

$$H_{t+1} = H_t + \frac{1}{2} \ln \frac{1 - \epsilon}{\epsilon} \cdot h_{t+1}$$

Initialize
$$H_1 = h_1 \in \mathcal{H}$$

For $t = 1 \dots$

Compute
$$w_i = -y_i \exp(-H_t(x_i)y_i)$$
, and normalize $p_i = |w_i| / \sum_j |w_j|$, $\forall i$

Run classification:
$$h_{t+1} = \arg\min_{h \in \mathcal{H}} \sum_{i=1}^{n} p_i \cdot \mathbf{1}(h(x_i) \neq y_i)$$

Weak learner's loss
$$\epsilon = \sum_{i: y_i \neq h_{b+1}(x_i)}^{n} p_i$$
 // total weight of examples where h_{t+1} made a mistake

$$H_{t+1} = H_t + \frac{1}{2} \ln \frac{1 - \epsilon}{\epsilon} \cdot h_{t+1} \qquad \text{// the best } \alpha = 0.5 \ln((1 - \epsilon)/\epsilon)$$