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3. Example: the AdaBoost Algorithm
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Gradient Descent without an accurate gradient

Consider minimizing the following function L(y),y € R"

Approximate Gradient descent:
Yir1 =Y — 18, Where g, # VL(y,)

Q: Under what condition of g,, can we still guarantee L(y,, ;) < L(y,)?

A: As long as <§t, VL(yt)> > 0



Gradient Descent without an accurate gradient

Yer1 = Ve — ’7§p where gt 7 VL(yz)

=&



Gradient Descent without an accurate gradient

Yer1 = Ve — ’7§p where gt 7 VL(yz)

=&

8t



Gradient Descent without an accurate gradient

Yer1 = Ve — ’7§p where gt 7 VL(yz)

=&




Gradient Descent without an accurate gradient

Yer1 = Ve — ’7§p where gt 7 VL(yz)

=&




Gradient Descent without an accurate gradient

Yer1 = Ve — ’7§p where gt 7 VL(yz)




Gradient Descent without an accurate gradient

Vir1 =V — ngﬂ where gt # VL(y,)

=g,




Gradient Descent without an accurate gradient

Vir1 =V — ngt’ where gt # VL(y,)

=g,




Gradient Descent without an accurate gradient

Yer1 = Ve — ﬂgt’ where gt 7 VL(yz)

=g,
Prove this via first order Taylor
expansion and the fact that g g, > 0
LL%—&D = L Q\%&/ \%/\ ~b>
s g = g’ﬁ/ + gt
g =& g)——=ag

| t”2



Gradient Descent without an accurate gradient
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Prove this via first order Taylor
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Gradient Descent without an accurate gradient

Yer1 = Ve — ﬂgt’ where gt 7 VL(yz)

=g,
Prove this via first order Taylor
expansion and the fact that g g, > 0
L(y,.1) ~ L(y,) — ’/]gt-rgt
= L(y) — ng,' (ag, + &) g =g+ 5t

= L(yt) - na)gt-rgt A// = (g gt) ” ” = ag,
8tll2

Positive since a > 0
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Key question that Boosting answers:

Can weak learners be combined together to generate a strong
learner with low bias?

(Weak learners: classifiers whose accuracy is slightly above 50%)
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Setup

We have a binary classification data &2 = {x;, y;}\_,, (x;,y;) ~ P

Hypothesis class #’, hypothesis & : X — {—1,+ 1}

Loss function £(h(x), ), e.g., exponential loss exp(—yh(x))

Goal: learn an ensemble H(x) = Z a,h(x), where h, € Z
=1



The Boosting Algorithm

Initialize H;, = h; € #
Fort=1 ...

Find a new classifier &, {, s.t., H,., = H,+ ah,, | has smaller
training error
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Denote § = [H,(x)), H(x,), ..., H(x,)| € R"

Define L(}) = Z £(3;,y,), where $. = H/(x;)
=1

L(y): the total training loss of ensemble H,

Q: To minimize L(¥), cannot we just do GD on ¥ directly?

A: no, we want find §7 that minimizes L, but it needs to be from some ensemble H
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Training weak learners

Denote § = [H,(x)), H(x,), ..., H(x,)| € R"

Define L(V) = Z Z(y;,y;), where ), = H/(x,)
i=1

Let us compute VL(Y¥) € R" — the ideal descent direction

- VL(y)

|dea: finda.h € # ', such that
[h(x,), ...h(x,)]"is close to — VL()
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Training weak learners

0py) 0wy
o - VL) = [- 5, 5, 1
arg min Z h(x;) - yf’ i X
hex 0y; y
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= arg m1n Z | w, | l(h(x) = sign(w;)) — 1(h(x;) # sign(w; )))

=1

o 1 (A X s )
_argmln2|w| (h(x)—SIQnW < XJ# SXN(W)

=1 -~




Training weak learners

0Gny) 0w 7
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he# i—1
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Training weak learners

or
_VLG) = [ (ayy,.y,), ((.)y; yn)]
oar(y;, y;)
aremin ) h(x
ghe% Z () 2y, y
= arg mm Z | w; | h(x) Slgn(w))

i=1 Turned it to a

n . weighted
= arg min Z | w, | (l(h(xl-) = sign(w;)) — 1(h(x,) # Slgn(wl-))) classification

heZ “= problem!

n

— arg mln Z |w;| - 1(h(x;) = sign(w,)) = arg mg; |w;| J1(h(x;) # — sign(w,))
he o __
= - L/??%l'//-:—ww)
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Training weak learners

- VL(y)

Finding [A(x,), ..., h(xn)]T that is

close to — V L(¥) can be done via
weighted binary classification:

3\,/
S ha Gl

[ (x), -
A new training set:

n
{pia xia — Sign(wi)}a where pi — | Wi | / 2 | Wi | yl — y + a[ht+1(x1)a RET) ht+1(xn)]T
j=1 "
Byyy = argmin Y p; - 1(h(x;) # — sign(w,)) A fe Ci )
he# _ .
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!

Hee (Xn)



Training weak learners

- VL(y)

Finding [A(x,), ..., h(xn)]T that is

close to — V L(¥) can be done via
weighted binary classification:

3\,/
S ha Gl

y
[ (x), -

A new training set:

{Pi»x;, — sign(wy) }, where p; = |Wi|/2 A ¥ =3+ alh (x), ..., by ()17
i=1

ht-l—l — arg m1n Zpl l(h(x) ;ﬁ — S|gn(W )) t(xl) + aht+1(x1) t(x ) + ah,H(x )]
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The Boosting Algorithm Revisit

Initialize H;, = h; € #
Fort=1...

Compute y; = H(x;), Vi € [n]

e w; := 0£(y;,y;)/0y,, and normalize p;, = | w;| /Z |w;|, Vi

classification: 4, | = arg min Zpl- - 1(h(x;) # — sign(w;))

=1

Add h,, i H,, = H, + ah,,

—VL()
Z .
arg max(— VL))" h(x,)
he# fe
_h(xn)_

J
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Train Weak learner

We will choose the exponential loss, i.€/,
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We will choose the exponential loss, i.e., £(y,y) = exp(—y - y)
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Train Weak learner

We will choose the exponential loss, i.e., £(y,y) = exp(—y - )

w; = 02(;, )10y, = — exp(y;y,)y;

|w;| =exp(=yy) Pi= |Wi|/2 | w; |
J

e = argmin 3 p1(h(x) # = sign(w))
i=1

= argmin )" p, - 1(h(x) # )
he#

i=1

Binary classification on weighted data

P = {pl-,xl-,yl-}, where Zpl- =1,p;, >0,Vi

l

Q: what does it mean if p; is large?
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Compute learning rate

Select the best learning rate a

By = argmin 3 p,- 1) #3)  Hyy = H,+ by,

i=1
Find the best learning rate via optimization:
n
arg min Z C(H(x;) + ah, (x;), y;)

>0
V=1

Compute the derivative wrt a, set it to zero, and solve for a
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Put everything together: AdaBoost

Initialize H, = h; € #
Fort=1...

Compute w; = — y,exp(—H,(x;)y;), and normalize p;, = | w;, |/2 |w;|, Vi
J

Run classification: /,, ; = arg min Zpi - 1(h(x) # ;)
he# i

n
Weak learner’s loss ¢ = Z P, // total weight of examples where A,
iryth, 1 () made a mistake

1 1-—¢
H.,, =H+ 5 In——-h,, // the best a = 0.5 In((1 — €)/¢)
€




