Boosting

Announcements

Recap on Bagging

Construct P, s.t., }A’(xl-, y;) = 1/n,Vi € [n]

Recap on Bagging

Construct P, s.t., P(x;,v;)) = 1/n,Vi € [n]

LN

Recap on Bagging

Construct P, s.t., }A’(xl-, y;) = 1/n,Vi € [n]
2, 2, D,

h,=1D3(Z,) h,=1D3(2,) h, =ID3(2,)

Recap on Bagging
Construct }A’ s.t., }A’(xl-, y;) = 1/n,Vi € [n]
2, 2, D

h,=1D3(Z,) h,=1D3(2,) h, =ID3(2,)

~o L7

Outline of Today

1. Gradient Descent without accurate gradient

2. Boosting as Approximate Gradient Descent

3. Example: the AdaBoost Algorithm

Gradient Descent without an accurate gradient

Consider minimizing the following function L(y),y € R"

Gradient Descent without an accurate gradient

Consider minimizing the following function L(y),y € R"

Gradient descent:

Yir1 =Y, — n8» Where g, = VL(y,)

Gradient Descent without an accurate gradient

Consider minimizing the following function L(y),y € R"

Gradient descent:

Yir1 =Y, — n8» Where g, = VL(y,)

When 7 is small and g, # 0, we know L(y,, ;) < L(y,)

Gradient Descent without an accurate gradient

Consider minimizing the following function L(y),y € R"

Approximate Gradient descent:

Yirl = Ve — 77§za where gt # VL(y,)

Gradient Descent without an accurate gradient

Consider minimizing the following function L(y),y € R"

Approximate Gradient descent:
Yir1 =Y — 18, Where g, # VL(y,)

Q: Under what condition of g,, can we still guarantee L(y,, ;) < L(y,)?

Gradient Descent without an accurate gradient

Consider minimizing the following function L(y),y € R"

Approximate Gradient descent:
Yir1 =Y — 18, Where g, # VL(y,)

Q: Under what condition of g,, can we still guarantee L(y,, ;) < L(y,)?

A: As long as <§t, VL(yt)> > 0

Gradient Descent without an accurate gradient

Yer1 = Ve — ’7§p where gt 7 VL(yz)

=&

Gradient Descent without an accurate gradient

Yer1 = Ve — ’7§p where gt 7 VL(yz)

=&

8t

Gradient Descent without an accurate gradient

Yer1 = Ve — ’7§p where gt 7 VL(yz)

=&

Gradient Descent without an accurate gradient

Yer1 = Ve — ’7§p where gt 7 VL(yz)

=&

Gradient Descent without an accurate gradient

Yer1 = Ve — ’7§p where gt 7 VL(yz)

Gradient Descent without an accurate gradient

Vir1 =V — ngﬂ where gt # VL(y,)

=g,

Gradient Descent without an accurate gradient

Vir1 =V — ngt’ where gt # VL(y,)

=g,

Gradient Descent without an accurate gradient

Yer1 = Ve — ﬂgt’ where gt 7 VL(yz)

=g,
Prove this via first order Taylor
expansion and the fact that g g, > 0
LL%—&D = L Q\%&/ \%/\ ~b>
s g = g’ﬁ/ + gt
g =& g)——=ag

| t”2

Gradient Descent without an accurate gradient

Yer1 = Ve — ﬂgt’ where gt 7 VL(yz)

=g,
Prove this via first order Taylor
expansion and the fact that g g, > 0
L(y,.1) ~ L(y,) — ’/]gt-rgt
1 g = g’ﬁ/ + gt

N\ ~Ney L

’\//
i =a
2’% g{ + %/& = (g, gt)” 2l 8¢

Gradient Descent without an accurate gradient

Vir1 =V — ngﬂ where gt = VL(y,)

=§;

Prove this via first order Taylor
expansion and the fact that g g, > 0

L(y,;1) =~ L(y,) — ﬂgz—rgt

= L(y,) — ng, (agt + 87
(C) 7 s — (5T
g =8, 8)
g r =88 tnz

Gradient Descent without an accurate gradient

Yer1 = Ve — ﬂgt’ where gt 7 VL(yz)

=g,
Prove this via first order Taylor
expansion and the fact that g g, > 0
L(y,.1) ~ L(y,) — ’/]gt-rgt
= L(y) — ng,' (ag, + &) 8 =8/ + gt
— L(yt) - (na)gt-rgt A// (gt) = ag,

| t”2

Gradient Descent without an accurate gradient

Yer1 = Ve — ﬂgt’ where gt 7 VL(yz)

=g,
Prove this via first order Taylor
expansion and the fact that g g, > 0
L(y,.1) ~ L(y,) — ’/]gt-rgt
= L(y) — ng,' (ag, + &) g =g+ 5t

= L(yt) - na)gt-rgt A// = (g gt) ” ” = ag,
8tll2

Positive since a > 0

Outline of Today

1. Gradient Descent without accurate gradient

2. Boosting as Approximate Gradient Descent

3. Example: the AdaBoost Algorithm

Key question that Boosting answers:

Can weak learners be combined together to generate a strong
learner with low bias?

(Weak learners: classifiers whose accuracy is slightly above 50%)

Setup

We have a binary classification data &2 = {x;, y;}_,, (x;,y;) ~ P

Hypothesis class #, hypothesis i : X — {—1, + 1}

Setup
We have a binary classification data &2 = {x;, y;}_,, (x;,y;) ~ P
Hypothesis class #’, hypothesish : X — {—1,+ 1}

Loss function £(h(x),), e.g., exponential loss exp(—yh(x))

Setup

We have a binary classification data &2 = {x;, y;}_,, (x;,y;) ~ P

Hypothesis class #’, hypothesis & : X — {—1,+ 1}

Loss function £(h(x),), e.g., exponential loss exp(—yh(x))

Goal: learn an ensemble H(x) = Z a,h(x), where h, € Z
=1

The Boosting Algorithm

Initialize H;, = h; € #
Fort=1 ...

Find a new classifier &, {, s.t., H,., = H,+ ah,, | has smaller
training error

Training weak learners

Denote y = [Ht(xl),H,(xz), ...,Ht(xn)]T e R"

Training weak learners
Denote y = [H,(xl),Ht(xz), ...,H,(xn)]T e R"

Define (V) = Z £(y;,y;), where y;, = H/(x;)

i=1

Training weak learners
Denote § = [H,(x)), H(x,), ..., H(x,)| € R"

Define L(§) = Z £(3;,y,), where $. = H/(x;)
=1

L(y): the total training loss of ensemble H,

Training weak learners
Denote § = [H,(x)), H(x,), ..., H(x,)| € R"

Define L(}) = Z £(3;,y,), where $. = H/(x;)
=1

L(y): the total training loss of ensemble H,

Q: To minimize L(¥), cannot we just do GD on ¥ directly?

Training weak learners
Denote § = [H,(x)), H(x,), ..., H(x,)| € R"

Define L(}) = Z £(3;,y,), where $. = H/(x;)
=1

L(y): the total training loss of ensemble H,

Q: To minimize L(¥), cannot we just do GD on ¥ directly?

A: no, we want find §7 that minimizes L, but it needs to be from some ensemble H

A)

Training weak learners

Denote y = [Ht(xl), H/(xy), ..., Ht(xn)]T e R"

n
Define L(§) = Z £(3;,y;), where $. = H/(x;)
=1

Let us compute VL(Y) € R" — the ideal descent direction

— VL(y)

A)

Training weak learners

Denote y = [Ht(xl), H/(xy), ..., Ht(xn)]T e R"

n
Define L(§) = Z £(3;,y;), where $. = H/(x;)
=1

Let us compute VL(Y) € R" — the ideal descent direction

— VL(y)

Training weak learners

Denote § = [H,(x)), H(x,), ..., H(x,)| € R"

Define L(V) = Z Z(y;,y;), where), = H/(x,)
i=1

Let us compute VL(Y¥) € R" — the ideal descent direction

- VL(y)

|dea: finda.h € # ', such that
[h(x,), ...h(x,)]"is close to — VL()

Training weak learners

- VL) = [-

>

or (V;» y))
0y,

D)

arg min
he#

Training weak learners

- VL) = [~

>

0r (¥;» y))
ay;

l

D)

Training weak learners

—VL(Y) = [-
. ot @ia i)
arg min h X;

= arg mm 2 | w, | h(x) Slgn(w))

=1

o (y;, y;)
0y

i

D)

Training weak learners
- VL) = [~

f(j\}ia yz)
arg min h(x.
ghe%z () aj}l

>

:=Wl'

= arg mm 2 | w, | h(x) Slgn(w))

=1

= arg min Z lw;] (1(h(x) = sign(wy) — 1(A(x)) # sign(w,)))

e

o (y;, y;)
0y

i

D)

Training weak learners

0py) 0wy
o - VL) = [- 5, 5, 1
arg min Z h(x;) - yf’ i X
hex 0y; y

= arg mm Z | w; | h(x) Slgn(w))

=1

= arg m1n Z | w, | l(h(x) = sign(w;)) — 1(h(x;) # sign(w;)))

=1

o 1 (A X s)
_argmln2|w| (h(x)—SIQnW < XJ# SXN(W)

=1 -~

Training weak learners

0Gny) 0w 7
~VL@) = [- D 5, 17
ot (y., y;
arg min Z h(x;) - (yA,))
hex 0y; y
=W-:

l

= arg mm Z | w; | h(x) Slgn(w))

=1

= arg min Z | w; | (1(h(x;) = sign(w) — 1(h(x;) # sign(w)))
he# i—1

= arg mln Z |w; | - 1(h(x;) = sign(w))) = arg mm Z |w;| - 1(h(x;) # — sign(w,))

zl ll

Training weak learners

or
_VLG) = [(ayy,.y,), ((.)y; yn)]
oar(y;, y;)
aremin) h(x
ghe% Z () 2y, y
= arg mm Z | w; | h(x) Slgn(w))

i=1 Turned it to a

n . weighted
= arg min Z | w, | (l(h(xl-) = sign(w;)) — 1(h(x,) # Slgn(wl-))) classification

heZ “= problem!

n

— arg mln Z |w;| - 1(h(x;) = sign(w,)) = arg mg; |w;| J1(h(x;) # — sign(w,))
he o __
= - L/??%l'//-:—ww)

Training weak learners

- VL(y)

Finding [A(x,), ..., h(xn)]T that is

close to — V L(¥) can be done via
weighted binary classification:

>

Training weak learners

- VL(y)

Finding [A(x,), ..., h(xn)]T that is

close to — V L(¥) can be done via
weighted binary classification:

>

A new training set:

n
(P X — sign(w,)}, where p; = |w,[/) |w,]
j=1

Training weak learners

- VL(y)

Finding [A(x,), ..., h(xn)]T that is

close to — V L(¥) can be done via
weighted binary classification:

A new training set:

n
(P X — sign(w,)}, where p; = |w,[/) |w,]
j=1

h,,, = arg %g; Zpl- - 1(h(x;) # — sign(w,)) ‘

i=1

Training weak learners

- VL(y)

Finding [A(x,), ..., h(xn)]T that is

close to — V L(¥) can be done via
weighted binary classification:

[y (X)), - hz+1(xn)]T
A new training set:

n
(P X — sign(w,)}, where p; = |w,[/) |w,]
j=1

h, = arg %g; Zpl- - 1(h(x;) # — sign(w,))

i=1

Training weak learners

- VL(y)

Finding [A(x,), ..., h(xn)]T that is

close to — V L(¥) can be done via
weighted binary classification:

3\,/
S ha Gl

[(x), -
A new training set:

n
(P X — sign(w,)}, where p; = |w,[/) |w,]
j=1

h, = arg %g; Zpl- - 1(h(x;) # — sign(w,))

i=1

Training weak learners

- VL(y)

Finding [A(x,), ..., h(xn)]T that is

close to — V L(¥) can be done via
weighted binary classification:

3\,/
S ha Gl

[(x), -
A new training set:

n
{pia xia — Sign(wi)}a where pi — | Wi | / 2 | Wi | yl — y + a[ht+1(x1)a RET) ht+1(xn)]T
j=1 "
Byyy = argmin Y p; - 1(h(x;) # — sign(w,)) A fe Ci)
he# _ .

i=1 -

!

Hee (Xn)

Training weak learners

- VL(y)

Finding [A(x,), ..., h(xn)]T that is

close to — V L(¥) can be done via
weighted binary classification:

3\,/
S ha Gl

y
[(x), -

A new training set:

{Pi»x;, — sign(wy) }, where p; = |Wi|/2 A ¥ =3+ alh (x), ..., by ()17
i=1

ht-l—l — arg m1n Zpl l(h(x) ;ﬁ — S|gn(W)) t(xl) + aht+1(x1) t(x) + ah,H(x)]

! [@@@,)(%) @em/ DIX)

The Boosting Algorithm Revisit

Initialize H;, = h; € #

Fort=1 ...

The Boosting Algorithm Revisit

Initialize H;, = h; € #
Fort=1...

Compute y; = H(x;), Vi € [n]

The Boosting Algorithm Revisit

Initialize H;, = h; € # A
53 v 20
Fort=1... ;" Loz

Compute y; = H(x;), Vi € [n]

Compute w; := 9£(y;, y;)/0y;, and normalize p; = |wl-|/z |w;}), Vi

The Boosting Algorithm Revisit

Initialize H;, = h; € #
Fort=1...
Compute y; = H(x;), Vi € [n]

Compute w; := 9£(y;, y;)/9y;, and normalize p;, = | w; | /Z |w;|, Vi
n J

Run classification: £, ; = arg min Zpl- - 1(h(x;) # — sign(w;))
i=1

The Boosting Algorithm Revisit

Initialize H;, = h; € #
Fort=1...
Compute y; = H(x;), Vi € [n]

Compute w; := 02(y,, y;)/dy,, and normalize p;, = | w; | /Z |w;|, Vi
n J

Run classification: £, ; = arg min Zpl- - 1(h(x;) # — sign(w;))
i=1

Add hy,: H,y = H + ah,

The Boosting Algorithm Revisit

Initialize H;, = h; € #
Fort=1...

Compute y; = H(x;), Vi € [n]

e w; := 0£(y;,y;)/0y,, and normalize p;, = | w;| /Z |w;|, Vi

classification: 4, | = arg min Zpl- - 1(h(x;) # — sign(w;))

=1

Add h,, i H,, = H, + ah,,

—VL()
Z .
arg max(— VL))" h(x,)
he# fe
h(xn)

J

Outline of Today

1. Gradient Descent without accurate gradient

2. Boosting as Approximate Gradient Descent

3. Example: the AdaBoost Algorithm

Train Weak learner

We will choose the exponential loss, i.€/,
C D
W e Z \n L7<\‘> — _(
A8 A o \g !
205>

Yor T i W/’(‘%‘ ?/)

Train Weak learner

We will choose the exponential loss, i.e., £(y,y) = exp(—y - y)

w; = 06(y;, y)10y; = — exp(y,y)y;

Y? - \\NC
i\v\h‘)

\7/\

Train Weak learner

We will choose the exponential loss, i.e., £(7,y) = exp(—y - J)

w; = 06(y;, y)10y; = — exp(y,y)y;

wil = exp(=9y) pi=1wil/ D 1w
J

Train Weak learner

We will choose the exponential loss, i.e., £(y,y) = exp(—y -)

w; = 02(;,)10y, = — exp(y;y,)y;

|w;| =exp(=yy) Pi= |Wi|/2 | w; |
J

e = argmin 3 p1(h(x) # = sign(w))

i=1
(= sin(Cor(304

A C{C TR

Train Weak learner

We will choose the exponential loss, i.e., £(y,y) = exp(—y - y)

w; = 06(y;, y)10y; = — exp(y,y)y;

wil = exp(=9y) pi=1wil/ D 1w
J
e = argmin 3 p1(h(x) # = sign(w,))

i=1

= arg min Zp,- - 1(h(x) #)
he# i1

Train Weak learner

We will choose the exponential loss, i.e., £(y,y) = exp(—y - y)

w; = 0095, y)109; = — exp(Py,)y;
! Vi)T OYs PLDDY Binary classification on weighted data

wil = exp(=9y) pi=1wil/ D 1w
J
e = argmin 3 p1(h(x) # = sign(w,))

i=1

P = {pi,xi,yl-}, where Zpl- =1,p;, >0,Vi

= arg min Z p; - 1(h(x) # ;)
he# i1

Train Weak learner

We will choose the exponential loss, i.e., £(y,y) = exp(—y -)

w; = 02(;,)10y, = — exp(y;y,)y;

|w;| =exp(=yy) Pi= |Wi|/2 | w; |
J

e = argmin 3 p1(h(x) # = sign(w))
i=1

= argmin)" p, - 1(h(x) #)
he#

i=1

Binary classification on weighted data

P = {pl-,xl-,yl-}, where Zpl- =1,p;, >0,Vi

l

Q: what does it mean if p; is large?

Compute learning rate

Select the best learning rate o

Ny = arg %{; Zpi - 1(h(x;) #) H., =H+ah,,

i=1

Compute learning rate

Select the best learning rate a

. = arg %{; ZP;‘ - 1(h(x;) # y) H, =H+ah,

i=1
Find the best learning rate via optimization:
n
arg min Z C(H(x;) + ah, (x;), y;)

a>0 i

Compute learning rate

Select the best learning rate a

By = argmin 3 p,- 1) #3) Hyy = H,+ by,

i=1
Find the best learning rate via optimization:
n
arg min Z C(H(x;) + ah, (x;), y;)

>0
V=1

Compute the derivative wrt a, set it to zero, and solve for a

Put everything together: AdaBoost

Initialize H; = h; € #
Fort=1...

Put everything together: AdaBoost

Initialize H; = h; € #
Fort=1...

Compute w;, =— y, exp(—H,(x,)y;), and normalize p, = | w, |/2 |w; |, Vi
J

Put everything together: AdaBoost

Initialize H; = h; € #

Fort=1 ...

Compute w; = — y, exp(—H,(x;)y;), and normalize p, = | w, |/Z |w;|, Vi
J

n
Run classification: /., ; = arg min Zpl- - 1(h(x) # y;)
he# 1

Put everything together: AdaBoost

Initialize Hy = hy € #
Fort=1...

Compute w; = — y;exp(—H,(x;)y;), and normalize p; = | w; |/Z |w; |, Vi
J

Run classification: 4, ; = arg min Zpi - 1(h(x;) # ;)
he#

i=1

n
Weak learner’s loss € = Z D;
yFhy,, ()

Put everything together: AdaBoost

Initialize H; = h; € #
Fort=1...
Compute w; = — y;exp(—H,(x;)y;), and normalize p;, = | w;, |/Z |w;|, Vi
; J
Run classification: /,, | = arg min Zpl- -1(h(x) # y))
heZ

i=1

n
Weak learner’s loss € = Z D; // total weight of examples where 7,
isyhy, () made a mistake

Put everything together: AdaBoost

Initialize Hy = hy € #
Fort=1...

Compute w; = — y;exp(—H,(x;)y;), and normalize p; = | w; |/Z |w; |, Vi
J

Run classification: 4, ; = arg min Zpl- - 1(h(x;) # ;)
he#

i=1

Weak learner’s loss e = Z p, // total weight of examples where A,
iryth, () made a mistake

Put everything together: AdaBoost

Initialize H, = h; € #
Fort=1...

Compute w; = — y,exp(—H,(x;)y;), and normalize p;, = | w;, |/2 |w;|, Vi
J

Run classification: /,, ; = arg min Zpi - 1(h(x) # ;)
he# i

n
Weak learner’s loss ¢ = Z P, // total weight of examples where A,
iryth, 1 () made a mistake

1 1-—¢
H.,, =H+ 5 In——-h,, // the best a = 0.5 In((1 — €)/¢)
€

