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👍 CUAI is a unique club at 
Cornell that promotes 
undergraduate-led ML 
research

👍 We’ve published 4 
NeurIPS, 1 ICML, 1 ICLR, 
and 1 ICCV paper since 2018

Cornell University Artificial Intelligence 
(CUAI)

Our Mission
❏ Prepare our members to tackle cutting-edge 

research topics
❏ Connect undergraduates with Cornell faculty to 

explore shared interests
❏ Provide research credit and financial support for 

compute resources and conference travel

We are recruiting! 👉



Announcement:



Outline for Today:

1. Supervised Learning (Classification / Regression) and Unsupervised learning

2. Generalization

3. Training / validation / testing
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Mathematical formulation of the pipeline

! = {(x1, y1), …, (xn, yn)}, xi ∈ ℝd, yi ∈ $( e.g.,$ = {−1,1}), (xi, yi) ∼ '
Dataset:

Hypothesis:

h : ℝd ↦ $
i.e., a neural network-based 

classifier that maps image to label 
of cat or dog

Hypothesis class

ℋ = {h} i.e., a large family of NNs with 
different parameters
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Examples of hypothesis

Inductive bias (i.e., assumptions) encoded in the hypothesis class

Ex:  is a linear function ; 

 contains all possible linear functions 

h h(x) = sign(w⊤x)
ℋ

Ex:  is nonlinear ; 

 contains all possible one-layer NN 

h h(x) = sign(w⊤(relu(Ax)))
ℋ
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No free lunch theorem says that we must make such assumptions

Informal theorem: for any machine learning algorithm , there must exist 
a task  on which it will fail 

+
'

We use prior knowledge (i.e., we believe 
linear function is enough) to design an ML 

algorithm here

Examples of hypothesis
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The Loss Function

Q: how to select the best hypothesis  from ? ĥ ℋ

Let’s define loss function ℓ : ℋ × ℝd × $ ↦ ℝ
Intuitively,  tells us how bad (e.g., classification mistake) the hypothesis  is. ℓ(h, x, y) h

Examples:

Zero-one loss:

ℓ(h, x, y) = {0 h(x) = y
1 h(x) ≠ y

Squared loss:

ℓ(h, x, y) = (h(x) − y)2



Learning/Training

Q: how to select the best hypothesis  from ? ĥ ℋ
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Learning/Training

Q: how to select the best hypothesis  from ? ĥ ℋ

With loss  being defined, we can perform training/learning:ℓ

ĥ = arg min
h∈ℋ

n

∑
i=1

ℓ(h, xi, yi)

e.g., total number of mistakes  makes on n 
training samples (training error)

h
The hypothesis that has 
smallest training error
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Regression
Example: learning to drive 

from expert

Feature x Expert steering 
angle y

! = {(x1, y1), …, (xn, yn)}
collected by human expert

Continuous 
variable ( )−π, π

Loss function: square loss 
ℓ(h, x, y) = (h(x) − y)2

Hypothesis class: linear functions 
h(x) := θ⊤x,  where θ ∈ ℝd

Training: minimizing mean squared error (MSE)

arg min

θ ∑
i

(θ⊤xi − yi)2/n



An Autonomous Land Vehicle  
In A Neural Network [Pomerleau, NIPS ‘88]
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Unsupervised Learning

! = {(x1), …, (xn)}, xi ∈ ℝd, xi ∼ '
Dataset:

Example: Density estimation / Anomaly detection

Can we construct a distribution  to 
approximate ? 

'̂
'
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Generalization: how well can our trained 

model do on unseen test examples?
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Let’s formalize this using distribution

The Independent and identically distributed (i.i.d) assumption:

Training data  is i.i.d sampled from a distribution , i.e., ,   

(i.e., all pairs are sampled from , and  is independent of others)

! ' xi, yi ∼ ' ∀i ∈ [n]
' (xi, yi)

We further assume test data is also from , i.e., ' (x, y) ∼ '

Generalization error: 0x,y∼' [ℓ(ĥ, x, y)]
e.g., expected classification error of ĥ
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0 else

Training error = 0, but could do terribly on test examples
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Overfitting

Overfitting: we have a small training error but large generalization/test error 

Example

Training error = 0 (e.g., we probably overfit to noises), but could do terribly on test examples

size of the house, etc 

Pr
ice

 o
f 

th
e 

ho
us

e 



Overfitting

How to tell that our models overfit? 
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Training, validation, and testing

Given a training dataset , we can split it into three sets:!

: training set!TR

: validation set!VA

: test set!TE

Before training/learning, we often randomly split it with size proportional to 80% / 10% / 10%
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Do not use test set to train/select models

We should not touch test set during training!

This makes sure that the test set  is independent of our model !TE ĥ

Such independence implies that:

1
|!TF | ∑

x,y∈!TE

ℓ(ĥ, x, y) ≈ 0x,y∼'[ℓ(ĥ, x, y)]

(Due to law of large numbers)
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Select / train models on small dataset
What if our original dataset is quite small, e.g.,  


(very possible in medical applications!)
n = 100

K-fold cross validation

Split the data into K folds (e.g., K = 10 or 20)
For  :i = 1 → K

:  all folds except the i’th fold!TR

Train model  on ĥ DTR

Validate on the i’th fold (i.e.,  = i’th fold)!VR

Average K validation errors

When K = n, this is leave-one-
out cross validation
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Summary

1. Given a task and a dataset 
! = {xi, yi}, xi, yi ∼ ' 2. Design hypothesis class  and loss 

function  (encodes inductive bias)
ℋ

ℓ

3. Train: ĥ = arg min
h∈ℋ ∑

(x,y∈!)
ℓ(h, x, y)

Often repeated many times using  / 
cross validation

!VA

Output:  that has small 
generalization error 

ĥ

0x,y∼'[ℓ(ĥ, x, y)]


