Neural Network:
Training & Backpropagation
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Compute gradients:
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SGD helps avoiding local minima and saddle point
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Consider the following one-dim case with identity transformation
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Summary so far

What we did:
for each edge weight w;, apply chain rule to calculate dy/ow;

What we got:
Able to compute gradient in running time O ((size of graph)z)

Can we do better in running time?



Outline of Today

1. Training NNs via SGD

2. A Naive approach of computing gradients

3. Backpropagation: efficient way of computing gradients



...Hinton popularized what they termed a
“backpropagation” algorithm ... in 1986.



...Hinton popularized what they termed a
“backpropagation” algorithm ... in 1986.

...the algorithm propagated measures of the errors produced by
the network’s guesses backwards through its neurons,
starting with those directly connected to the outputs.



...Hinton popularized what they termed a
“backpropagation” algorithm ... in 1986.

...the algorithm propagated measures of the errors produced by
the network’s guesses backwards through its neurons,
starting with those directly connected to the outputs.

This allowed networks with intermediate “hidden” neurons between
input and output layers to learn efficiently, overcoming the
limitations noted by Minsky and Papert.
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Forward pass: backward pass:

Store input & output of all neurons Compute derivatives
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Summary of the forward pass

All nodes’ values (i.e., z, u, y) are computed and stored

Q: what is the computation complexity of the forward pass?

A: linear in # of Edges + # of nodes
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The backward Pass

Claim: to compute dy/ow, V edge w, it suffices to compute 0y/dz, V node z.

@

Proof:
WLOG consider /0w, ,

A 0y 0z; Ouf
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_ Known from
forward pass
Given by Derivative of
assumption RelLU




The backward Pass

We compute 0y/0z' backwards in time fromt = T'tot = 1:
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The backward Pass: induction step

Assume that we have computed 0¢/0z;, Vi

Via multivariate chain rule:

()——D 05

Step 2:
P ot

We are done at node zﬁ‘l!

After step 1, we have d7/0u/, Vi Repeat this for all z/~!, Vi
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Summary of backward pass

The computation from 09/z" to 09/7"! is the # of all edges in the sub-graph

Total computation: # of edges + # of hodes!

Exercise: can you express backward pass in matrix-vector format”?
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1. Naively compute all derivatives wrt edges using chain rule takes (E + V) time

2. Backpropagation: forward pass & backward pass takes O(E + V) time

Forward pass.:)c=zO sul szl s ut S S ZT*?
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