Neural Network:
Training & Backpropagation

Announcements

Recap

A two layer fully connected feedforward NN:

WRZTSAEN

Recap

A two layer fully connected feedforward NN:

DRZUSEION
SN
x[3]=14—() 4:>////

Wil w2 a

(x) := aTReLU (WIReLU (W!!kx)) + b

Outline of Today

1. Training NNs via SGD

2. A Naive approach of computing gradients

3. Backpropagation: efficient way of computing gradients

Training neural network via SGD

Square loss on training example (x, y)

(x) := aTReLU (W2IReLU (Wilhy)) + b

A () @\
W21 N

Training neural network via SGD

Square loss on training example (x, y)

(x) := aTReLU (W2IReLU (Wilhy)) + b

"S< '%g\
D % 'y

£(h(x),y) = (9 — y)°, where § = h(x)

Training neural network via SGD

Square loss on training example (x, y)

(x) := aTReLU (W2IReLU (Wilhy)) + b

A () @\
W21 N

£(h(x),y) = (9 — y)°, where § = h(x)

Trainable parameters WU W2 o b

Training neural network via SGD

Square loss on training example (x, y)

(x) := aTReLU (W2IReLU (Wilhy)) + b

W21 N

A () @\

£(h(x),y) = (9 — y)°, where § = h(x)

Trainable parameters WU W2 o b

Compute gradients:

0 (h(x),y) 0t (h(x),y)
oWl oW1l

or (h(x),y) 0f(h(x),y)
oo ob

Training neural network via SGD

Mini-batch Stochastic gradient descent

0 = W Wl a, b
Forepoct = 11to T

Training neural network via SGD

Mini-batch Stochastic gradient descent

g =Wl w2l g b]/// go through dataset multiple times
Forepoct = 11to T

Training neural network via SGD

Mini-batch Stochastic gradient descent

g =Wl w2l g b]/// go through dataset multiple times
Forepoct = 11to T

Randomly shuffle the data

Training neural network via SGD

Mini-batch Stochastic gradient descent

g =Wl w2l g b]/// go through dataset multiple times

Or epoc O // important (unbiased estimate of

Randomly shuffle the data — the true gradient)

Training neural network via SGD

Mini-batch Stochastic gradient descent

g =Wl w2l g b]/// go through dataset multiple times

Or epoc O // important (unbiased estimate of

Randomly shuffle the data — the true gradient)
Split the data into n/B many batches &, each w/ size B

Training neural network via SGD

Mini-batch Stochastic gradient descent

g =Wl w2l g b]/// go through dataset multiple times

Or epoc O // important (unbiased estimate of

Randomly shuffle the data — the true gradient)
Split the data into n/B many batches &, each w/ size B

Fori=1ton/B

Training neural network via SGD

Mini-batch Stochastic gradient descent

g =Wl w2l g b]/// go through dataset multiple times

Or epoc O // important (unbiased estimate of

Randomly shuffle the data — the true gradient)
Split the data into n/B many batches &, each w/ size B

Fori=1ton/B

Mini-batch gradient ¢ = Z V0 (hy(x),y)/B
X,YED,

Training neural network via SGD

Mini-batch Stochastic gradient descent

g =Wl w2l g b]/// go through dataset multiple times

Or epoc O // important (unbiased estimate of

Randomly shuffle the data — the true gradient)
Split the data into n/B many batches &, each w/ size B

Fori=1ton/B

Mini-batch gradient ¢ = Z V0 (hy(x),y)/B

X,YED .
0=0-—ng

Training neural network via SGD

SGD helps avoiding local minima and saddle point

A saddle point

\

A local minima

Training neural network via SGD

SGD tends to converge to a flat region

Training loss

.

Training neural network via SGD

SGD tends to converge to a flat region

Training loss

o

Training neural network via SGD

SGD tends to converge to a flat region

Training loss

A flat local minima solution can help generalizes better to test data

Training neural network via SGD

SGD tends to converge to a flat region

Arue/test loss

Training loss

A flat local minima solution can help generalizes better to test data

Outline of Today

1. Training NNs via SGD

2. A Naive approach of computing gradients

3. Backpropagation: efficient way of computing gradients

A naive algorithm

Consider the following one-dim case with identity transformation

Wi 14%) w3 Wr a .
QO O

A naive algorithm

Consider the following one-dim case with identity transformation

Wi 14%) w3 Wr a .
QO O

A\

y = aWp.. .WoW X

A naive algorithm

Consider the following one-dim case with identity transformation

Wi 14%) w3 Wr a .
QO O

A\

y = aWp.. .WoW X

Let’s compute derivatives oy/ow, Vi = 1,...T

A naive algorithm

Consider the following one-dim case with identity transformation

Wo W3 Wr a R
r—QO—QO® 7

A\

y = aWp.. .WoW X

Let’s compute derivatives oy/ow, Vi = 1,...T

of ot 0y

Via chaln rule: —— =

ow; 0y dw

A naive algorithm

—~®—@— -

lyp = Whly

Y

A naive algorithm

. @W2 @W3 WT@CZ>5>

{0 = Zr = WhHZj

Via chain rule:

A naive algorithm

. @WZ @W3 WT@CZ>5>

{0 = Zr = WhHZj

Via chain rule:

09 9 0z 09z, o

ow, dzy 077, 0zy Ow,

A naive algorithm

Wi W W3 Wr ¢
OB ORI ORN

p =X Zn = Whj

Via chain rule:

0y 0y 0z 0Z, 07
> D L= // computation: T
ow, 0Zr 0Zr_1 071 OW;

X

A naive algorithm

{0 =

Via chain rule:

6}7 B &j\? 6ZT

ow, 0zp 0zp_,

8& B 6& 6ZT

ow, 077 0zp_,

—~®—@— -

aZZ OZ 1

aZI awl

623 0Z2

022 0W2

lyp = Whly

// computation: T

Y

A naive algorithm

X
{0 =

Via chain rule:

6}7 B &j\? §ZT

ow, 0zp 0zp_,

8& B aj\f 6ZT

ow, 077 0zp_,

822 OZ 1

—~®—@— -

aZI @Wl

623 0Z2

022 aWz

lyp = Whly

// computation: T

// computation: T-1

Y

A naive algorithm

%) W3 Wr a
OO () —

{0 = Zr = WhHZj

Via chain rule:

0y 0y 0z 0z 0z

— // computation: T
aWI aZT aZT—l ﬁzl Gwl P

o0y 0y 0z 0% 0%

— // computation: T-1
aWZ aZT aZT—l 022 aWz P

8& B 0& 8ZT

OWT - aZT aWT

A naive algorithm

Wh W3 Wr a
OO () —

0 = I = Whi

Via chain rule:

aj\} B aj} aZT 822 621

— // computation: T
6w1 aZT aZT—l 821 Gwl P

— // computation: T-1
ow, 0Zr 0Zr_1 0Zr OW, P

8& B 0& 8ZT

oW, = 9z Owr // computation: 1

A naive algorithm

. @W2 @W3 WT@CZ>§}

0 = I = Whi

Via chain rule:

aj} B aj\} aZT aZz azl

— // computation: T
ow; 0z 0zp_y 0% 0w ’ Total complexity:

aj} aj} aZT aZ3 aZz . 1 +2+ 4+ T = O(Tz)
oWy 0z 0z 0z, O // computation: T-1

8& B 0& 8ZT

oW, = 9z Owr // computation: 1

A naive algorithm

. @W2 @W3 WT@CZ>§}

0 = I = Whi

Via chain rule:

aj} B aj\} aZT aZz 021

— // computation: T
ow; 0z 0zp_y 0% 0w ’ Total complexity:

aj} aj} aZT aZ3 aZz . 1 +2+ 4+ T = O(Tz)
oWy 0z 0z 0z, O // computation: T-1

oy 0y 0zr Quadratic in size of the graph!

oW, = 9z Owr // computation: 1

Summary so far

What we did:
for each edge weight w;, apply chain rule to calculate dy/ow;

Summary so far

What we did:
for each edge weight w;, apply chain rule to calculate dy/ow;

What we got:
Able to compute gradient in running time O ((size of graph)z)

Summary so far

What we did:
for each edge weight w;, apply chain rule to calculate dy/ow;

What we got:
Able to compute gradient in running time O ((size of graph)z)

Can we do better in running time?

Outline of Today

1. Training NNs via SGD

2. A Naive approach of computing gradients

3. Backpropagation: efficient way of computing gradients

...Hinton popularized what they termed a
“backpropagation” algorithm ... in 1986.

...Hinton popularized what they termed a
“backpropagation” algorithm ... in 1986.

...the algorithm propagated measures of the errors produced by
the network’s guesses backwards through its neurons,
starting with those directly connected to the outputs.

...Hinton popularized what they termed a
“backpropagation” algorithm ... in 1986.

...the algorithm propagated measures of the errors produced by
the network’s guesses backwards through its neurons,
starting with those directly connected to the outputs.

This allowed networks with intermediate “hidden” neurons between
input and output layers to learn efficiently, overcoming the
limitations noted by Minsky and Papert.

Overview of backpropagation

Forward pass followed by a backward pass

Forward pass:

Overview of backpropagation

Forward pass followed by a backward pass

Forward pass:

Store input & output of all neurons

Overview of backpropagation

Forward pass followed by a backward pass

Forward pass: backward pass:

Store input & output of all neurons

Overview of backpropagation

Forward pass followed by a backward pass

Forward pass: backward pass:

Store input & output of all neurons Compute derivatives

x[d] ~

A Forward Pass: from7r=0to T

1st Iayer of ReLU 2rd Iayer of ReLU

A Forward Pass: from7r=0to T

1st Iayer of ReLU 2rd Iayer of ReLU

A Forward Pass: from7r=0to T

1st Iayer of ReLU 2rd Iayer of ReLU

A Forward Pass: from7r=0to T

1st Iayer of ReLU 2rd Iayer of ReLU

A Forward Pass: from7r=0to T

1st Iayer of ReLU 2rd Iayer of ReLU

&

A Forward Pass: from7r=0to T

1st Iayer of ReLU 2rd Iayer of ReLU

Summary of the forward pass

All nodes’ values (i.e., z, u, y) are computed and stored

Summary of the forward pass

All nodes’ values (i.e., z, u, y) are computed and stored

Q: what is the computation complexity of the forward pass”?

Summary of the forward pass

All nodes’ values (i.e., z, u, y) are computed and stored

Q: what is the computation complexity of the forward pass?

A: linear in # of Edges + # of nodes

The backward Pass

Claim: to compute dy/ow, V edge w, it suffices to compute 0y/dz, V node z.

The backward Pass

Claim: to compute dy/ow, V edge w, it suffices to compute 0y/dz, V node z.

@) W)
(D——)
(D——E)

The backward Pass

Claim: to compute dy/ow, V edge w, it suffices to compute 0y/dz, V node z.

Proof:

@ Wé | WLOG consider dy/dw; |
(&D)—©
DO

The backward Pass

Claim: to compute dy/ow, V edge w, it suffices to compute 0y/dz, V node z.

Proof:

@ Wé | WLOG consider dy/dw; |

oy/ow;

()—&)
(D—

The backward Pass

Claim: to compute dy/ow, V edge w, it suffices to compute 0y/dz, V node z.

Proof:

@ Wé | WLOG consider dy/dw; |

A 0y 0z; Ouf
oy/ow) , -2 .

0z! ouf Owil

()—&)
(D—

The backward Pass

Claim: to compute dy/ow, V edge w, it suffices to compute 0y/dz, V node z.

Proof:

@ Wé | WLOG consider dy/dw; |

A 0y 0z; Ouf
oy/ow) , -2 . 1

0z! ouf Owil

A\

ay 101 —1
=—.0'(u})z
pw (1) 2,

()—&)
(D—

The backward Pass

Claim: to compute dy/ow, V edge w, it suffices to compute 0y/dz, V node z.

Proof:

@ Wé | WLOG consider dy/dw; |

0y 0z; Ouy

@ @ Oﬁ/awil) d_z{ ouf | ow} |
(D)—E)

: o)) 25

Given by
assumption

The backward Pass

Claim: to compute dy/ow, V edge w, it suffices to compute 0y/dz, V node z.

Proof:

@ Wé | WLOG consider d&/dWil

0y 0z; Ouy

oylow =— - —-
@D—@) .. A ou ow,

Given by Derivative of
assumption RelLU

The backward Pass

Claim: to compute dy/ow, V edge w, it suffices to compute 0y/dz, V node z.

@

Proof:
WLOG consider /0w, ,

A 0y 0z; Ouf
oy/ow) , -2 .

0zi ouf 6w§,1

_ Known from
forward pass
Given by Derivative of
assumption RelLU

The backward Pass

We compute 0y/0z' backwards in time fromt = T'tot = 1:

The backward Pass: base case

Base case: compute 09/0z”, for all node z at T-th Layer

O\e
o5

v

The backward Pass: base case

Base case: compute 09/0z”, for all node z at T-th Layer

O\
@_QZ'\’GD aj}/aZlT — Cll

v

The backward Pass: induction step

Assume that we have computed dy/0z;, Vi

(D——D
()=
()@

The backward Pass: induction step

Assume that we have computed dy/0z;, Vi

WLOG, consider dy /azé_l

(D——D
()=
(@

The backward Pass: induction step

Assume that we have computed dy/0z;, Vi

WLOG, consider dy /azé_l

OO

V N
@ — @ Step1:foral|i,ﬂzﬂﬁ
| duf 0z} du!

(D)@

The backward Pass: induction step

Assume that we have computed dy/0z;, Vi

(D——D
()=
()@

WLOG, consider dy /azé_l

0y 0y 0z
Step 1: for all |, el = el
ou! 0z ou!
ay
- — G(Mit)

07!

The backward Pass: induction step

Assume that we have computed dy/0z;, Vi

WLOG, consider dy /azé_l

Step 1: for all | B _ %%
ep 1: foralli, — = ———
OE=E) P oul ozt oul
— ay
D+ = —= - o'u)

07!

The backward Pass: induction step

Assume that we have computed dy/0z;, Vi

WLOG, consider dy / 025_1

Step 1: for all i o9 _ 9 %

ep1:foralli, — = ———

() =) P ol oz ou!
— ay

@ «— =— o)

07!

The backward Pass: induction step

Assume that we have computed 0¢/0z;, Vi

(D—D
(@D—@) ..
@ "EO—O

After step 1, we have 03/du’, Vi

The backward Pass: induction step

Assume that we have computed 0¢/0z;, Vi

Via multivariate chain rule:

(D—D
(@D—@) ..
@ "E@—O

After step 1, we have 03/du’, Vi

The backward Pass: induction step

Assume that we have computed 0¢/0z;, Vi
Via multivariate chain rule:

D ()) 0y Z 0y

Step 2;
P ou! 62

@) ..
@ O—O6

After step 1, we have 03/du’, Vi

The backward Pass: induction step

Assume that we have computed 0¢/0z;, Vi

Via multivariate chain rule:

PY
1@ @ Step 2: azty—l
’ 2
@—O -

@ OO

After step 1, we have 03/du’, Vi

The backward Pass: induction step

Assume that we have computed 0¢/0z;, Vi

Via multivariate chain rule:

PY
1@ @ Step 2: azty—l
’ 2
@—O -

@ OO

After step 1, we have 03/du’, Vi

We are done at node zﬁ‘l!

The backward Pass: induction step

Assume that we have computed 0¢/0z;, Vi

Via multivariate chain rule:

()——D 05

Step 2:
P ot

We are done at node zﬁ‘l!

After step 1, we have 03/du’, Vi

The backward Pass: induction step

Assume that we have computed 0¢/0z;, Vi

Via multivariate chain rule:

()——D 05

Step 2:
P ot

We are done at node zﬁ‘l!

After step 1, we have d7/0u/, Vi Repeat this for all z/~!, Vi

Summary of backward pass

Summary of backward pass

The computation from 09/z" to 09/7"! is the # of all edges in the sub-graph

Summary of backward pass

The computation from 09/z" to 09/7"! is the # of all edges in the sub-graph

Total computation: # of edges + # of hodes!

Summary of backward pass

The computation from 09/z" to 09/7"! is the # of all edges in the sub-graph

Total computation: # of edges + # of hodes!

Exercise: can you express backward pass in matrix-vector format”?

Summary for today

1. Naively compute all derivatives wrt edges using chain rule takes (E + V) time

Summary for today

1. Naively compute all derivatives wrt edges using chain rule takes (E + V) time

2. Backpropagation: forward pass & backward pass takes O(E + V) time

Summary for today

1. Naively compute all derivatives wrt edges using chain rule takes (E + V) time

2. Backpropagation: forward pass & backward pass takes O(E + V) time

Forward pass:)c=zO sulszls . sdsutt s S ZT*?

Summary for today

1. Naively compute all derivatives wrt edges using chain rule takes (E + V) time

2. Backpropagation: forward pass & backward pass takes O(E + V) time

Forward pass.:)c=zO sul szl s ut S S ZT*?

0y 0y 0y
Backward pass: — — — ... —
oz 0771 071

