Neural Network

Announcements

Recap on Boosting
Boosting iteratively learns a new classifier, and add it to the ensemble

Initialize H;, = h) € #
Fort=1...

Recap on Boosting
Boosting iteratively learns a new classifier, and add it to the ensemble

Initialize H; = h) € #
Fort=1...
Denote § = [H,(x)), H(x), ..., H(x,)| € R"

Recap on Boosting

Boosting iteratively learns a new classifier, and add it to the ensemble

- VL(y)

Initialize H; = h) € #
Fort=1... /[hm]
h(x,)

- “p
Denote y = [Ht(xl),Ht(xz), ...,Ht(xn)] e R”

Recap on Boosting

Boosting iteratively learns a new classifier, and add it to the ensemble

- VL(y)
Initialize H;, = h) € #
Fort=1... 4@]
. T)
Denote § = [H,(x)), H(xy), ..., H(x,)] € R"

h(x;)
Solve the optimization problem: /1, | = arg max o |, = VI(Y)
hex h(x,)

Recap on Boosting

Boosting iteratively learns a new classifier, and add it to the ensemble

- VL(y)

Initialize H; = h) € #
Fort=1... /[h(xl)]

. T T | hexy
Denote y = [Ht(xl),Ht(xz), ...,Ht(xn)] e R

h(x;)
Solve the optimization problem: /1, ;| = arg max - |, = VI(Y)
hex h(x,)

H = H +ahy,

Recap on AdaBoost

Adaboost follows this framework with (7, y) = exp(—y - y)

1. Create a new weighted dataset:

Recap on AdaBoost

Adaboost follows this framework with (7, y) = exp(—y - y)

1. Create a new weighted dataset:

For each x;, compute p; & exp(—J; - y;)

Recap on AdaBoost

Adaboost follows this framework with (7, y) = exp(—y - y)

1. Create a new weighted dataset:

For each x;, compute p; & exp(—y; - ;)

Binary classification: s, ; = arg min Zpl- - 1{h(x;) # y;}
he# ;

Recap on AdaBoost

Adaboost follows this framework with (7, y) = exp(—y - y)

1. Create a new weighted dataset:

For each x;, compute p; & exp(—J; - y;)
Binary classification: s, ; = arg min Zpi - 1{h(x;) # y;}
he# ;

2. Add new learner to the ensemble:

Recap on AdaBoost
Adaboost follows this framework with (7, y) = exp(—y - y)

1. Create a new weighted dataset:
For each x;, compute p; «x exp(—y; - y;)
Binary classification: /2, ; = arg min Zpi -1{h(x) # ;)
he# ;
2. Add new learner to the ensemble:

1 1-¢€
Ht+1 :Ht-l-ahl

/ ht+1

Outline of Today

1. Analysis of Boosting
2. Multilayer feedforward Neural Network

3. Training a neural network

The definition of Weak learning

Each weaker learning optimizes its own data:

D = {pi,xi,yl-}, where Zpl- =1,p,>0,Vi

1

h. ., = arg min - 1(h(x; :
1 ghe%g}pl (h(x) #)

The definition of Weak learning

Each weaker learning optimizes its own data:

D = {pi,xi,yl-}, where Zpi =1,p,>0,Vi

1

h,, = arg zg; ;pi - 1(h(x) # y;)

- 1
Assume that weaker learner’s loss € := Zpl-l{htﬂ(xl-) Zyi} < ST > 0
i=1

The definition of Weak learning

Each weaker learning optimizes its own data:

D = {pi,xl-,yl-}, where Zpl- =1,p,>0,Vi

1

h. ., = arg min - 1(h(x; :
1 ghe%;pl (h(x) # ¥)

. 1
Assume that weaker learner’s loss € := Zpil{hlﬂ(xl-) #y;} < 5 v, v>0

i=1

Q: assume # is symmetric, i.e., h € F iff —h € #, why does the above always hold?

Weaker learnability implies approximating gradient well

n
1
Assume that weaker learner’s loss € := Zpl-l{hrﬂ(xi) *# vy} < ST Y > 0
i=1

— VL(y)

Weaker learnability implies approximating gradient well

n
1
Assume that weaker learner’s loss € := Zpl-l{hﬂrl(xi) *# vy} < ST Y > 0
i=1

— VL(y)

(- VL@ [h”.l.(.xl)]

1 (x,)

Weaker learnability implies approximating gradient well

n
1
Assume that weaker learner’s loss € := Zpl-l{hﬂrl(xi) *# vy} < ST Y > 0
i=1

— VL(y)

(- VL@ [h”.l.(_xl)]

1 (x,)

> (), lwih2y >0

j=1

Weaker learnability implies approximating gradient well

n
1
Assume that weaker learner’s loss € := Zpl-l{htﬂ(xi) *# vy} < ST Y > 0
i=1

- VL)

(= VLE)T [h”.l.(.xl)]

By (%)
h+1 ht+1(x1)""’hf+1()]T

> () w2y >0

J=1

Within 90 degree, so
improve the objective!

Formal Convergence of AdaBoost

Then after T iterations, for the original exp loss, we have

1 n
— Y exp(—Hy(x) - 3) < {1l = 47"

i=1

(Proof in lecture note, optional)

Formal Convergence of AdaBoost

Then after T iterations, for the original exp loss, we have

1 n
— Y exp(—Hy(x) ;) < (1l = 47"

i=1

Note zero-one loss is upper bounded by exponential loss

(Proof in lecture note, optional)

Formal Convergence of AdaBoost

Then after T iterations, for the original exp loss, we have

1 n
— ¥ exp(=Hy(x) - y) < (1 = 47)"”

i=1
Note zero-one loss is upper bounded by exponential loss
| < ' l % 2\172
— 2 USigN(H () # i} < — D7 exp(—Hy(x) - y) < n(l = 47%)
=1 i=1

(Proof in lecture note, optional)

Thinking about Boosting via two player zero sum game
1D =n
(X,)

@
1{h(x) # y}
|| =m

Thinking about Boosting via two player zero sum game
1D =n
(X,)

Row player plays hypothesis h € #

® Column player plays example (x, y)
h 1{h(x) # y}

| Z| =m

Thinking about Boosting via two player zero sum game
1D =n
(X,)

Row player plays hypothesis h € #

® Column player plays example (x, y)
h 1{h(x) # y}

| Z | =m Row player gets loss 1{A(x) # v}

Thinking about Boosting via two player zero sum game

|D|=n
(X, ¥)
Row player plays hypothesis h € #
PR Column player plays example (x, y)
h H{h(x) # y}
\H | =m Row player gets loss 1{A(x) # y}
Column player gets loss —1{A(x) # y}

Thinking about Boosting via two player zero sum game

12| =n
(X, y)
Row player plays hypothesis h € #
® Column player plays example (x, y)
h 1{h(x) # y}
\H | =m Row player gets loss 1{/(x) # y}
Column player gets loss —1{A(x) # y}

Boosting can be understood as running some
specific algorithm to find the Nash equilibrium of
the game

Outline of Today

1. Analysis of Boosting
2. Multilayer feedforward Neural Network

3. Training a neural network

Linear Regression Revisit

Price y=wix +wy

Size of the house

Price

[

Linear Regression Revisit

y = wix +w,

-

Negative part does not

make

"/

Size of the house

too much sense

Price

[

Linear Regression Revisit

y=W1X+WO

"/

-

Size of the house

Negative part does not

make

too much sense

We can fix this with a simple
nonlinear function

y = max{w;x + wy, 0}

Price

[

Linear Regression Revisit

y=w1x+w0

"/

-

Size of the house

Negative part does not

make

too much sense

We can fix this with a simple
nonlinear function

y = max{w;x + wy, 0}

y = max{wx + w,,0}

Price

[

Linear Regression Revisit

y=W1X+WO

"/

-

Size of the house

Negative part does not

make

too much sense

We can fix this with a simple
nonlinear function

y = max{w;x + wy, 0}

y = max{wx + w,,0}

rectified linear unit (ReLU)

A single neuron network

y = max{w;x + wy,0}

A single neuron network

y = max{w;x + w,0}

y = —max{w;x + wy,0}

A single neuron network

y = max{wx + w0}

y =amax{wx + wy,0} + b

y = —max{w;x + wy,0}

A single neuron network

xl[d+ 1] =1

A single neuron network

x[1]

x[2] Wy

L ey
Way

max{wx[1] + ... + wy x[d + 1],0}

xl[d+ 1] =1

A single neuron network

x[1] y
x|2] Wy
\ @ ab y y=aReLUw'x) + b

Way
max {wx[1] + ... + w,, x[d + 11,0}

xl[d+ 1] =1

Let us stack multiple neurons together

ReLU@x "w,)
x[1]

= 3
= aReLUGx™w) + b
X[2] ReLum y lzzl 1 (l)

'y

/@/

xl[d+1]=1

ReLU(x "wy)

Let us stack multiple neurons together

ReLU@ "'w,)

ReLum

Y
o

ReLU(@x "wy)

x[1]

x[2]

x[d+1]=1

Let us stack multiple neurons together

ReLU@ "w,)

ReLum

x[1]

x[2]

5

ReLU(x "wy)

x[d+1]=1

'y

Vectorized form:

Define W =

(WI)T

(WK)T

= RKXd

Let us stack multiple neurons together

ReLU(xTw,) Vectorized form:
x[1] :)T
T Define W = ... = REKxd
x[2] ReLU(xw,) T
/ a=lay...ac"
xld+1]1=1 @
ReLU(@x "wy)

Let us stack multiple neurons together

Vectorized form:
ReLU@ "w,)

» (WI)T
Define W= | --- | € R&

'y

/ a = :al,...,aK]T
&)

y=a' (ReLU(Wx)> + b

x[1]

x[2]

x[d+1] =1
ReLU(x "wy)

Let us stack multiple neurons together

Vectorized form:
ReLU(x"w))

> (WI)T
Define W = e RKxd
ReLU(x "w,) (WK)T

Y

/ a=la,...,ar]"
< ,

y=a (ReLU(Wx))

x[1]

x[2]

x[d+ 1] =1
ReLU(@x "wy)

Learnable feature ¢(x)

What does a neural network approximate

y=a' (ReLU(Wx)) +b

What does a neural network approximate

y=a' (ReLU(Wx)) + b

It’s a pieces wise linear functions

What does a neural network approximate

y=a' (ReLU(Wx)) +b
It’s a pieces wise linear functions

Consider d = 1 case (and assume b = 0):

What does a neural network approximate

y=a' (ReLU(Wx)) + b
It’s a pieces wise linear functions

Consider d = 1 case (and assume b = 0):

K=1:y=a max{wx+c, 0}

What does a neural network approximate

y=a' (ReLU(Wx)) + b
It’s a pieces wise linear functions

Consider d = 1 case (and assume b = 0):

K=1:y=a max{wx+c, 0}

e

What does a neural network approximate

y=a' (ReLU(Wx)) +b
It’s a pieces wise linear functions
Consider d = 1 case (and assume b = 0):
K=1:y=a max{wx+c, 0}

K=2:y=a max{wx+ c, 0}

+a, max{w,x + ¢,, 0} /

What does a neural network approximate

y=a' (ReLU(Wx)) + b
It’s a pieces wise linear functions
Consider d = 1 case (and assume b = 0):
K=1:y=a max{wx+c;, 0}

K=2:y=a max{wx+c, 0}

+a, max{w,x + ¢,, 0} //

What does a neural network approximate

y=a' (ReLU(Wx)) +b
It’s a pieces wise linear functions

Consider d = 1 case (and assume b = 0):
K=1:y=a max{wx+c, 0}

K=2:y=a max{wx+ c, 0}

+a, max{w,x + ¢,, 0}

What does a neural network approximate

y=a' (ReLU(Wx)) +b
It’s a pieces wise linear functions

Consider d = 1 case (and assume b = 0):
K=1:y=a max{wx+cy, 0}

K=2:y=a max{wx+c, 0}

+a, max{w,x + ¢,, 0}

K=3:y=a max{wx+c;, 0}

+a, max{w,x + ¢,, 0}
+a; max{wsx + c3, 0}

What does a neural network approximate

y=a' (ReLU(Wx)) +b
It’s a pieces wise linear functions

Consider d = 1 case (and assume b = 0):
K=1:y=a max{wx+cy, 0}

K=2:y=a max{wx+c, 0}

+a, max{w,x + ¢,, 0}

K=3:y=a max{wx+c;, 0}

+a, max{w,x + ¢,, 0}
+a; max{wsx + c3, 0}

What does a neural network approximate

y=a' (ReLU(Wx)) +b
It’s a pieces wise linear functions

Consider d = 1 case (and assume b = 0):
K=1:y=a max{wx+c, 0}

K=2:y=a max{wx+cy, 0}

+a, max{w,x + ¢,, 0}

K=3:y=a max{wx+c, 0}

+a, max{w,x + ¢,, 0}
+a; max{wsx + ¢3, 0}

What does a neural network approximate

y=a' (ReLU(Wx)) + b

Claim: a wide enough one layer NN can approximate any smooth functions

What does a neural network approximate

y=a' (ReLU(Wx)) + b

Claim: a wide enough one layer NN can approximate any smooth functions

What does a neural network approximate

y=a' (ReLU(Wx)) + b

Claim: a wide enough one layer NN can approximate any smooth functions

What does a neural network approximate

y=a' (ReLU(Wx)) + b

Claim: a wide enough one layer NN can approximate any smooth functions

What does a neural network approximate

y=a' (ReLU(Wx)) + b

Claim: a wide enough one layer NN can approximate any smooth functions

What does a neural network approximate

y=a' (ReLU(Wx)) + b

Claim: a wide enough one layer NN can approximate any smooth functions

What does a neural network approximate

y=a' (ReLU(Wx)) + b

Claim: a wide enough one layer NN can approximate any smooth functions

A multi-layer fully connected neural network
x[1] . @

x[2] %Q\

x{d] = 1 /@%@/

Wil w2 a

/)

A multi-layer fully connected neural network

x[1] ~ ()
B %Q>y
x{d] = 1 /@%2]&@/&

W[l]

y = alReLU (WIReLU (Witk)) + b
_/)/—m

A multi-layer fully connected neural network

A multi-layer fully connected neural network

Define it by a forward pass:

A multi-layer fully connected neural network

Define it by a forward pass:

A0

A multi-layer fully connected neural network

Define it by a forward pass:

A0 —

Fort=1to T-1:

A multi-layer fully connected neural network

Define it by a forward pass:

A0

Fort=1to T-1:

71 = ReLU (WIZ)

A multi-layer fully connected neural network

Define it by a forward pass:

A0

Fort=1to T-1:

71 = ReLU (WIZ)

The benefits of going deep

The benefits of going deep

x[1]

x[2]

Allows us to represent complicated functions without making NN too wide

