Neural Network



Announcements



Recap on Boosting
Boosting iteratively learns a new classifier, and add it to the ensemble

Initialize H;, = h) € #
Fort=1...



Recap on Boosting
Boosting iteratively learns a new classifier, and add it to the ensemble

Initialize H; = h) € #
Fort=1...
Denote § = [H,(x)), H(x), ..., H(x,)| € R"



Recap on Boosting

Boosting iteratively learns a new classifier, and add it to the ensemble

- VL(y)

Initialize H; = h) € #
Fort=1... /[hm]
h(x,)

- “p
Denote y = [Ht(xl),Ht(xz), ...,Ht(xn)] e R”



Recap on Boosting

Boosting iteratively learns a new classifier, and add it to the ensemble

- VL(y)
Initialize H;, = h) € #
Fort=1... 4@]
. T )
Denote § = [H,(x)), H(xy), ..., H(x,)] € R"

h(x;)
Solve the optimization problem: /1, | = arg max o |, = VI(Y)
hex h(x,)



Recap on Boosting

Boosting iteratively learns a new classifier, and add it to the ensemble

- VL(y)

Initialize H; = h) € #
Fort=1... /[h(xl)]

. T T | hexy
Denote y = [Ht(xl),Ht(xz), ...,Ht(xn)] e R

h(x;)
Solve the optimization problem: /1, ;| = arg max - |, = VI(Y)
hex h(x,)

H = H +ahy,
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Recap on AdaBoost
Adaboost follows this framework with (7, y) = exp(—y - y)

1. Create a new weighted dataset:
For each x;, compute p; «x exp(—y; - y;)
Binary classification: /2, ; = arg min Zpi -1{h(x) # ;)
he# ;
2. Add new learner to the ensemble:

1 1-¢€
Ht+1 :Ht-l-ahl

/ ht+1



Outline of Today

1. Analysis of Boosting
2. Multilayer feedforward Neural Network

3. Training a neural network
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The definition of Weak learning

Each weaker learning optimizes its own data:

D = {pi,xl-,yl-}, where Zpl- =1,p,>0,Vi

1

h. ., = arg min - 1(h(x; :
1 ghe%;pl (h(x) # ¥)

. 1
Assume that weaker learner’s loss € := Zpil{hlﬂ(xl-) #y;} < 5 v, v>0

i=1

Q: assume # is symmetric, i.e., h € F iff —h € #, why does the above always hold?
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Weaker learnability implies approximating gradient well

n
1
Assume that weaker learner’s loss € := Zpl-l{htﬂ(xi) *# vy} < ST Y > 0
i=1

- VL)

(= VLE)T [h”.l.(.xl)]

By (%)
h+1 ht+1(x1)""’hf+1( )]T

> () w2y >0

J=1

Within 90 degree, so
improve the objective!
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Formal Convergence of AdaBoost

Then after T iterations, for the original exp loss, we have

1 n
— ¥ exp(=Hy(x) - y) < (1 = 47)"”

i=1
Note zero-one loss is upper bounded by exponential loss
| < ' l % 2\172
— 2 USigN(H () # i} < — D7 exp(—Hy(x) - y) < n(l = 47%)
=1 i=1

(Proof in lecture note, optional)
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Thinking about Boosting via two player zero sum game

12| =n
(X, y)
Row player plays hypothesis h € #
® Column player plays example (x, y)
h 1{h(x) # y}
\H | =m Row player gets loss 1{/(x) # y}
Column player gets loss —1{A(x) # y}

Boosting can be understood as running some
specific algorithm to find the Nash equilibrium of
the game
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Negative part does not

make

too much sense

We can fix this with a simple
nonlinear function

y = max{w;x + wy, 0}

y = max{wx + w,,0}

rectified linear unit (ReLU)
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A single neuron network

x[1] y
x|2] Wy
\ @ ab y y=aReLUw'x) + b

Way
max {wx[1] + ... + w,, x[d + 11,0}

xl[d+ 1] =1
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Let us stack multiple neurons together

Vectorized form:
ReLU(x"w))

> (WI)T
Define W = e RKxd
ReLU(x "w,) (WK)T

Y

/ a=la,...,ar]"
< ,

y=a (ReLU(Wx))

x[1]

x[2]

x[d+ 1] =1
ReLU(@x "wy)

Learnable feature ¢(x)
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A multi-layer fully connected neural network

x[1] ~ ()
B %Q>y
x{d] = 1 /@%2]&@/&

W[l]

y = alReLU (WIReLU (Witk) ) + b
\_/)/—m
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Define it by a forward pass:

A0

Fort=1to T-1:

71 = ReLU (WIZ)
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The benefits of going deep

x[1]

x[2]

Allows us to represent complicated functions without making NN too wide



