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[
h(x1)…
h(xn)]
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Ht+1 = Ht + αht+1

Denote ŷ = [Ht(x1), Ht(x2), …, Ht(xn)]⊤ ∈ ℝn
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Recap on AdaBoost

Adaboost follows this framework with ℓ( ̂y, y) = exp(− ̂y ⋅ y)

1. Create a new weighted dataset:

For each , compute  xi pi ∝ exp(− ̂yi ⋅ yi)

Binary classification: ht+1 = arg min
h∈ℋ ∑

i
pi ⋅ 1{h(xi) ≠ yi}

2. Add new learner to the ensemble:

Ht+1 = Ht + 1
2 ln 1 − ϵ

ϵ
⋅ ht+1



Outline of Today

1. Analysis of Boosting

2. Multilayer feedforward Neural Network

3. Training a neural network
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+̃ = {pi, xi, yi},  where ∑
i

pi = 1, pi ≥ 0,∀i

ht+1 = arg min
h∈ℋ

n

∑
i=1

pi ⋅ 1(h(xi) ≠ yi)

Assume that weaker learner’s loss ϵ :=
n

∑
i=1

pi1{ht+1(xi) ≠ yi} ≤ 1
2 − γ, γ > 0

Each weaker learning optimizes its own data:

Q: assume  is symmetric, i.e.,  iff , why does the above always hold? ℋ h ∈ ℋ −h ∈ ℋ
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Formal Convergence of AdaBoost

Then after T iterations, for the original exp loss, we have

1
n

n

∑
i=1

exp(−HT(xi) ⋅ yi) ≤ n(1 − 4γ2)T/2

Note zero-one loss is upper bounded by exponential loss

1
n

n

∑
i=1

1{sign(HT(xi)) ≠ yi} ≤ 1
n

n

∑
i=1

exp(−HT(xi) ⋅ yi) ≤ n(1 − 4γ2)T/2

(Proof in lecture note, optional)
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Thinking about Boosting via two player zero sum game

h

(x, y)

1{h(x) ≠ y}

|ℋ | = m

Row player plays hypothesis h ∈ ℋ
Column player plays example (x, y)

Row player gets loss 1{h(x) ≠ y}
Column player gets loss −1{h(x) ≠ y}

Boosting can be understood as running some 
specific algorithm to find the Nash equilibrium of 

the game

|+ | = n
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y = max{w1x + w0,0}

rectified linear unit (ReLU)
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x[1]

x[2]

…

x[d + 1] = 1

y

ReLU(x⊤w1)

ReLU(x⊤w2)

ReLU(x⊤wK)

…

Vectorized form:

Define W =
(w1)⊤

…
(wK)⊤

∈ ℝK×d

α = [a1, …, aK]⊤

y = α⊤ (ReLU(Wx)) + b

Learnable feature ϕ(x)



What does a neural network approximate

y = α⊤ (ReLU(Wx)) + b



What does a neural network approximate

y = α⊤ (ReLU(Wx)) + b

It’s a pieces wise linear functions



What does a neural network approximate

y = α⊤ (ReLU(Wx)) + b

It’s a pieces wise linear functions

Consider  case (and assume ):d = 1 b = 0



What does a neural network approximate

y = α⊤ (ReLU(Wx)) + b

It’s a pieces wise linear functions

Consider  case (and assume ):d = 1 b = 0

K = 1 : y = a1 max{w1x + c1, 0}



What does a neural network approximate

y = α⊤ (ReLU(Wx)) + b

It’s a pieces wise linear functions

Consider  case (and assume ):d = 1 b = 0

K = 1 : y = a1 max{w1x + c1, 0}



What does a neural network approximate

y = α⊤ (ReLU(Wx)) + b

It’s a pieces wise linear functions

Consider  case (and assume ):d = 1 b = 0

K = 1 : y = a1 max{w1x + c1, 0}
K = 2 : y = a1 max{w1x + c1, 0}

+a2 max{w2x + c2, 0}



What does a neural network approximate

y = α⊤ (ReLU(Wx)) + b

It’s a pieces wise linear functions

Consider  case (and assume ):d = 1 b = 0

K = 1 : y = a1 max{w1x + c1, 0}
K = 2 : y = a1 max{w1x + c1, 0}

+a2 max{w2x + c2, 0}



What does a neural network approximate

y = α⊤ (ReLU(Wx)) + b

It’s a pieces wise linear functions

Consider  case (and assume ):d = 1 b = 0

K = 1 : y = a1 max{w1x + c1, 0}
K = 2 : y = a1 max{w1x + c1, 0}

+a2 max{w2x + c2, 0}



What does a neural network approximate

y = α⊤ (ReLU(Wx)) + b

It’s a pieces wise linear functions

Consider  case (and assume ):d = 1 b = 0

K = 1 : y = a1 max{w1x + c1, 0}
K = 2 : y = a1 max{w1x + c1, 0}

+a2 max{w2x + c2, 0}

K = 3 : y = a1 max{w1x + c1, 0}
+a2 max{w2x + c2, 0}

+a3 max{w3x + c3, 0}



What does a neural network approximate

y = α⊤ (ReLU(Wx)) + b

It’s a pieces wise linear functions

Consider  case (and assume ):d = 1 b = 0

K = 1 : y = a1 max{w1x + c1, 0}
K = 2 : y = a1 max{w1x + c1, 0}

+a2 max{w2x + c2, 0}

K = 3 : y = a1 max{w1x + c1, 0}
+a2 max{w2x + c2, 0}

+a3 max{w3x + c3, 0}



What does a neural network approximate

y = α⊤ (ReLU(Wx)) + b

It’s a pieces wise linear functions

Consider  case (and assume ):d = 1 b = 0

K = 1 : y = a1 max{w1x + c1, 0}
K = 2 : y = a1 max{w1x + c1, 0}

+a2 max{w2x + c2, 0}

K = 3 : y = a1 max{w1x + c1, 0}
+a2 max{w2x + c2, 0}

+a3 max{w3x + c3, 0}



What does a neural network approximate
y = α⊤ (ReLU(Wx)) + b

Claim: a wide enough one layer NN can approximate any smooth functions



What does a neural network approximate
y = α⊤ (ReLU(Wx)) + b

Claim: a wide enough one layer NN can approximate any smooth functions



What does a neural network approximate
y = α⊤ (ReLU(Wx)) + b

Claim: a wide enough one layer NN can approximate any smooth functions



What does a neural network approximate
y = α⊤ (ReLU(Wx)) + b

Claim: a wide enough one layer NN can approximate any smooth functions



What does a neural network approximate
y = α⊤ (ReLU(Wx)) + b

Claim: a wide enough one layer NN can approximate any smooth functions



What does a neural network approximate
y = α⊤ (ReLU(Wx)) + b

Claim: a wide enough one layer NN can approximate any smooth functions



What does a neural network approximate
y = α⊤ (ReLU(Wx)) + b

Claim: a wide enough one layer NN can approximate any smooth functions



A multi-layer fully connected neural network

x[1]

x[2]

…

x[d] = 1

y

W[1] W[2] α



A multi-layer fully connected neural network

x[1]

x[2]

…

x[d] = 1

y

W[1] W[2] α

y = α⊤ReLU (W[2]ReLU (W[1]x)) + b



A multi-layer fully connected neural network

x[1]

x[2]

…

x[d] = 1

y… ……



A multi-layer fully connected neural network

x[1]

x[2]

…

x[d] = 1

y… ……

Define it by a forward pass:



A multi-layer fully connected neural network

x[1]

x[2]

…

x[d] = 1

y… …

z[1] = x
…

Define it by a forward pass:



A multi-layer fully connected neural network

x[1]

x[2]

…

x[d] = 1

y… … For t = 1 to T-1: 

z[1] = x
…

Define it by a forward pass:



A multi-layer fully connected neural network

x[1]

x[2]

…

x[d] = 1

y… … For t = 1 to T-1: 

z[1] = x

z[t+1] = ReLU (W[t]zt)

…

Define it by a forward pass:



A multi-layer fully connected neural network

x[1]

x[2]

…

x[d] = 1

y… … For t = 1 to T-1: 

z[1] = x

z[t+1] = ReLU (W[t]zt)
y = α⊤z[T] + b

…

Define it by a forward pass:
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The benefits of going deep

Allows us to represent complicated functions without making NN too wide

x[1]

x[2]

…

x[d] = 1

y… …


