Neural Network

Announcements

Boosting iteratively learns a new classifier, and add it to the ensemble

Initialize $H_1 = h_1 \in \mathcal{H}$ For t = 1 ...

Boosting iteratively learns a new classifier, and add it to the ensemble

Initialize
$$H_1 = h_1 \in \mathcal{H}$$

For t = 1 ...
Denote $\hat{\mathbf{y}} = \left[H_t(x_1), H_t(x_2), \dots, H_t(x_n)\right]^\top \in \mathbb{R}^n$

Boosting iteratively learns a new classifier, and add it to the ensemble

Initialize $H_1 = h_1 \in \mathcal{H}$ For t = 1 ... Denote $\hat{\mathbf{y}} = [H_t(x_1), H_t(x_2), \dots, H_t(x_n)]^\top \in \mathbb{R}^n$ $-\nabla L(\hat{\mathbf{y}})$ $\begin{bmatrix} h(x_1) \\ \cdots \\ h(x_n) \end{bmatrix} \leftarrow \mathbb{R}^n$

Boosting iteratively learns a new classifier, and add it to the ensemble

Initialize
$$H_1 = h_1 \in \mathscr{H}$$

For $t = 1 \dots$
Denote $\hat{\mathbf{y}} = \left[H_t(x_1), H_t(x_2), \dots, H_t(x_n)\right]^{\mathsf{T}} \in \mathbb{R}^n$
Solve the optimization problem: $h_{t+1} = \arg \max_{h \in \mathscr{H}} \left\langle \begin{bmatrix} h(x_1) \\ \cdots \\ h(x_n) \end{bmatrix}, -\nabla L(\hat{\mathbf{y}}) \right\rangle$

Boosting iteratively learns a new classifier, and add it to the ensemble

Initialize
$$H_1 = h_1 \in \mathscr{H}$$

For t = 1 ...
Denote $\hat{\mathbf{y}} = \left[H_t(x_1), H_t(x_2), \dots, H_t(x_n)\right]^{\mathsf{T}} \in \mathbb{R}^n$
Solve the optimization problem: $h_{t+1} = \arg \max_{h \in \mathscr{H}} \left\langle \begin{bmatrix} h(x_1) \\ \cdots \\ h(x_n) \end{bmatrix}, -\nabla L(\hat{\mathbf{y}}) \right\rangle$
 $H_{t+1} = H_t + \alpha h_{t+1}$

Adaboost follows this framework with $\ell(\hat{y}, y) = \exp(-\hat{y} \cdot y)$

1. Create a new weighted dataset:

Adaboost follows this framework with $\ell(\hat{y}, y) = \exp(-\hat{y} \cdot y)$

1. Create a new weighted dataset: $4l_{e}(\chi_{i})$

For each x_i , compute $p_i \propto \exp(-\hat{y}_i \cdot y_i)$

Adaboost follows this framework with $\ell(\hat{y}, y) = \exp(-\hat{y} \cdot y)$

1. Create a new weighted dataset:

For each x_i , compute $p_i \propto \exp(-\hat{y}_i \cdot y_i)$ Binary classification: $h_{t+1} = \arg\min_{h \in \mathcal{H}} \sum_i p_i \cdot \mathbf{1}\{h(x_i) \neq y_i\}$

Adaboost follows this framework with $\ell(\hat{y}, y) = \exp(-\hat{y} \cdot y)$

1. Create a new weighted dataset:

For each x_i , compute $p_i \propto \exp(-\hat{y}_i \cdot y_i)$

Binary classification:
$$h_{t+1} = \arg\min_{h \in \mathcal{H}} \sum_{i} p_i \cdot \mathbf{1}\{h(x_i) \neq y_i\}$$

2. Add new learner to the ensemble:

Adaboost follows this framework with $\ell(\hat{y}, y) = \exp(-\hat{y} \cdot y)$

1. Create a new weighted dataset:

For each
$$x_i$$
, compute $p_i \propto \exp(-\hat{y}_i \cdot y_i)$
Binary classification: $h_{t+1} = \arg\min_{h \in \mathcal{H}} \sum_i p_i \cdot \mathbf{1}\{h(x_i) \neq y_i\}$

2. Add new learner to the ensemble:

Outline of Today

1. Analysis of Boosting

2. Multilayer feedforward Neural Network

3. Training a neural network

The definition of Weak learning

Each weaker learning optimizes its own data:

$$\widetilde{\mathcal{D}} = \{p_i, x_i, y_i\}, \text{ where } \sum_i p_i = 1, p_i \ge 0, \forall i$$
$$h_{t+1} = \arg\min_{h \in \mathscr{H}} \sum_{i=1}^n p_i \cdot \mathbf{1}(h(x_i) \neq y_i)$$

The definition of Weak learning

Each weaker learning optimizes its own data:

$$\widetilde{\mathscr{D}} = \left\{ p_i, x_i, y_i \right\}, \text{ where } \sum_i p_i = 1, p_i \ge 0, \forall i$$
$$h_{t+1} = \arg\min_{h \in \mathscr{H}} \sum_{i=1}^n p_i \cdot \mathbf{1}(h(x_i) \neq y_i)$$
Assume that weaker learner's loss $\epsilon := \sum_{i=1}^n p_i \mathbf{1}\{h_{t+1}(x_i) \neq y_i\} \le \frac{1}{2} - \gamma, \ \gamma > 0$

The definition of Weak learning

Each weaker learning optimizes its own data:

$$\widetilde{\mathscr{D}} = \left\{ p_i, x_i, y_i \right\}, \text{ where } \sum_i p_i = 1, p_i \ge 0, \forall i$$
$$h_{t+1} = \arg\min_{h \in \mathscr{H}} \sum_{i=1}^n p_i \cdot \mathbf{1}(h(x_i) \neq y_i)$$
Assume that weaker learner's loss $\epsilon := \sum_{i=1}^n p_i \mathbf{1}\{h_{t+1}(x_i) \neq y_i\} \le \frac{1}{2} - \gamma, \ \gamma > 0$

Q: assume \mathscr{H} is symmetric, i.e., $h \in \mathscr{H}$ iff $-h \in \mathscr{H}$, why does the above always hold?

Assume that weaker learner's loss $\epsilon := \sum_{i=1}^{n} p_i \mathbf{1}\{h_{t+1}(x_i) \neq y_i\} \le \frac{1}{2} - \gamma, \ \gamma > 0$

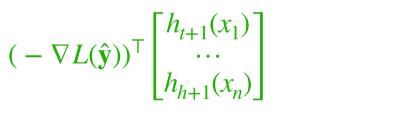
=1

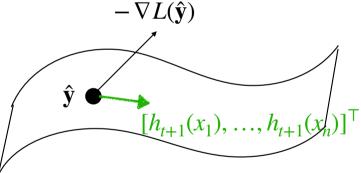
$$-\nabla L(\hat{\mathbf{y}})$$

$$\hat{\mathbf{y}}$$

$$[h_{t+1}(x_1), \dots, h_{t+1}(x_n)]^{\mathsf{T}}$$

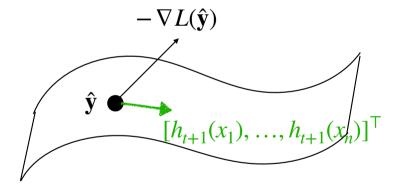
Assume that weaker learner's loss $\epsilon := \sum_{i=1}^{n} p_i \mathbf{1}\{h_{t+1}(x_i) \neq y_i\} \le \frac{1}{2} - \gamma, \ \gamma > 0$





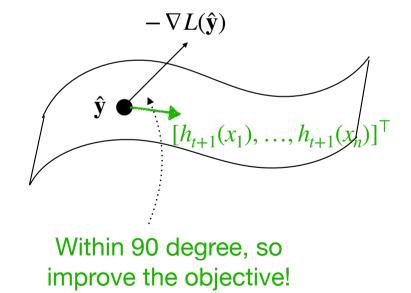
Assume that weaker learner's loss $\epsilon := \sum_{i=1}^{n} p_i \mathbf{1}\{h_{t+1}(x_i) \neq y_i\} \le \frac{1}{2} - \gamma, \ \gamma > 0$

$$(-\nabla L(\hat{\mathbf{y}}))^{\mathsf{T}} \begin{bmatrix} h_{t+1}(x_1) \\ \cdots \\ h_{h+1}(x_n) \end{bmatrix}$$
$$\geq (\sum_{j=1}^n |w_j|) 2\gamma > 0$$



Assume that weaker learner's loss $\epsilon := \sum_{i=1}^{n} p_i \mathbf{1} \{ h_{t+1}(x_i) \neq y_i \} \le \frac{1}{2} - \gamma, \ \gamma > 0$

$$(-\nabla L(\hat{\mathbf{y}}))^{\top} \begin{bmatrix} h_{t+1}(x_1) \\ \dots \\ h_{h+1}(x_n) \end{bmatrix}$$
$$\geq (\sum_{j=1}^n |w_j|) 2\gamma > 0$$



Formal Convergence of AdaBoost

Then after T iterations, for the original exp loss, we have

$$\frac{1}{n} \sum_{i=1}^{n} \exp(-H_T(x_i) \cdot y_i) \le n(1 - 4\gamma^2)^{T/2}$$

(Proof in lecture note, optional)

Formal Convergence of AdaBoost

Then after T iterations, for the original exp loss, we have

$$\frac{1}{n} \sum_{i=1}^{n} \exp(-H_T(x_i) \cdot y_i) \le n(1 - 4\gamma^2)^{T/2}$$

Note zero-one loss is upper bounded by exponential loss

(Proof in lecture note, optional)

Formal Convergence of AdaBoost

Then after T iterations, for the original exp loss, we have

$$\frac{1}{n} \sum_{i=1}^{n} \exp(-H_T(x_i) \cdot y_i) \le n(1 - 4\gamma^2)^{T/2}$$

Note zero-one loss is upper bounded by exponential loss

$$\frac{1}{n} \sum_{i=1}^{n} \mathbf{1}\{\operatorname{sign}(H_T(x_i)) \neq y_i\} \leq \frac{1}{n} \sum_{i=1}^{n} \exp(-H_T(x_i) \cdot y_i) \leq n(1 - 4\gamma^2)^{T/2}$$

Arg number it misticles
(Proof in lecture note, optional)

 $|\mathcal{D}| = n$ (x, y) $h = 1\{h(x) \neq y\}$ $|\mathcal{H}| = m$

 $|\mathcal{D}| = n$ (x, y) $h \quad 1{h(x) \neq y}$ $|\mathcal{H}| = m$

Row player plays hypothesis $h \in \mathcal{H}$

Column player plays example (x, y)

 $|\mathcal{D}| = n$ (x, y) h $1\{h(x) \neq y\}$ $|\mathcal{H}| = m$

Row player plays hypothesis $h \in \mathcal{H}$

Column player plays example (x, y)

Row player gets loss $\mathbf{1}{h(x) \neq y}$

 $|\mathcal{D}| = n$ (x, y) h = h $1\{h(x) \neq y\}$ $|\mathcal{H}| = m$

Row player plays hypothesis $h \in \mathcal{H}$

Column player plays example (x, y)

Row player gets loss $\mathbf{1}{h(x) \neq y}$ Column player gets loss $-\mathbf{1}{h(x) \neq y}$

h = m $|\mathcal{H}| = m$ (x, y) $\mathbf{1}\{h(x) \neq y\}$

 $|\mathcal{D}| = n$

Row player plays hypothesis $h \in \mathcal{H}$

Column player plays example (x, y)

Row player gets loss $\mathbf{1}{h(x) \neq y}$ Column player gets loss $-\mathbf{1}{h(x) \neq y}$

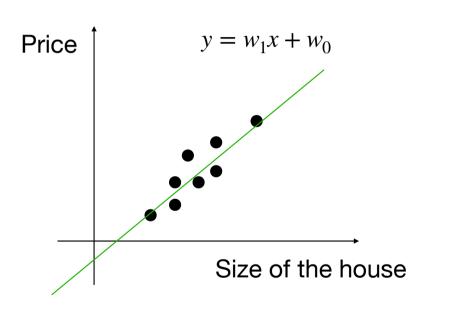
Boosting can be understood as running some specific algorithm to find the Nash equilibrium of the game

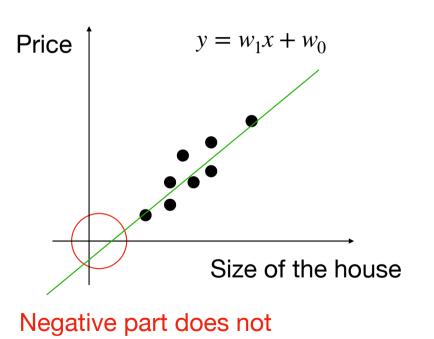
Outline of Today

1. Analysis of Boosting

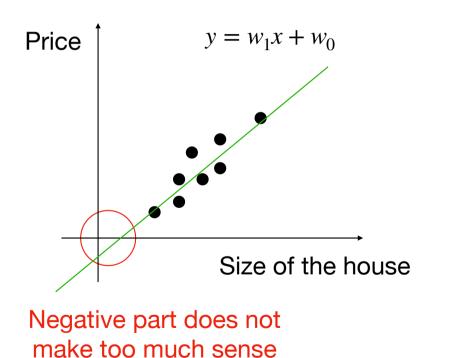
2. Multilayer feedforward Neural Network

3. Training a neural network



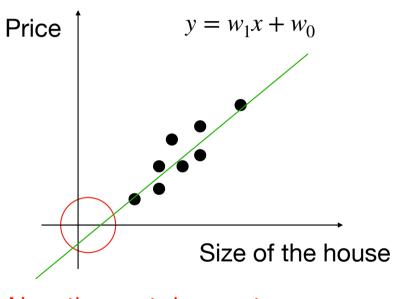


make too much sense



We can fix this with a simple nonlinear function

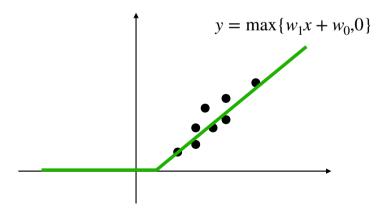
$$y = \max\{w_1 x + w_0, 0\}$$

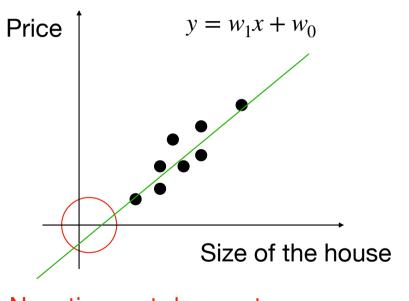


Negative part does not make too much sense

We can fix this with a simple nonlinear function

 $y = \max\{w_1 x + w_0, 0\}$

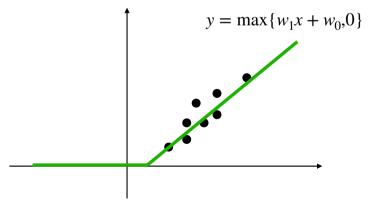




Negative part does not make too much sense

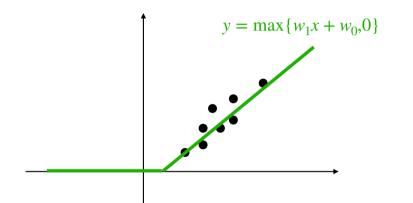
We can fix this with a simple nonlinear function

$$y = \max\{w_1 x + w_0, 0\}$$

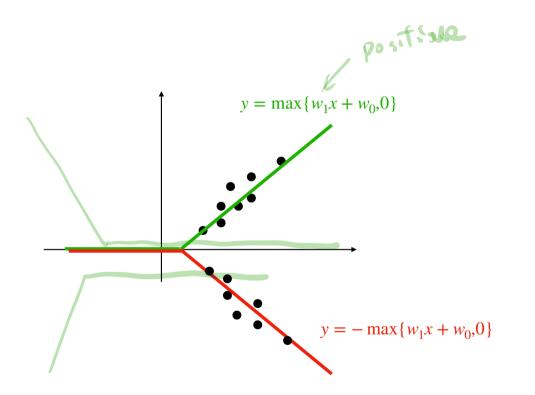


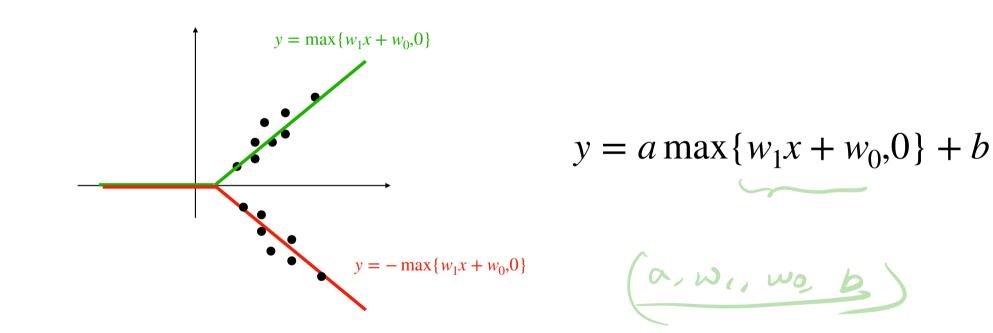
rectified linear unit (ReLU)

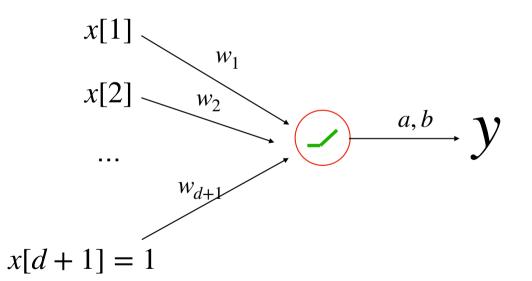
A single neuron network

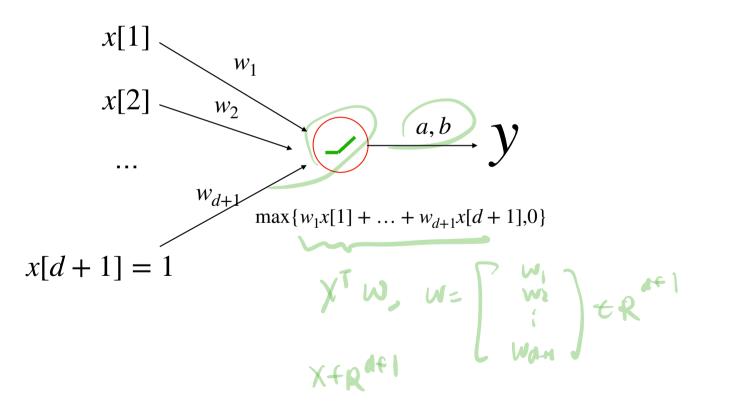


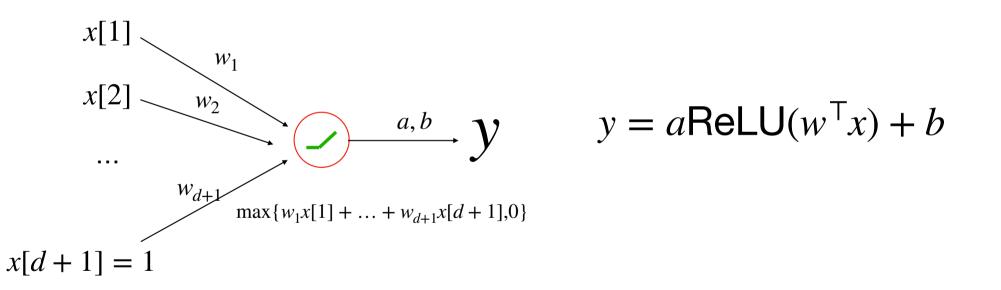
A single neuron network

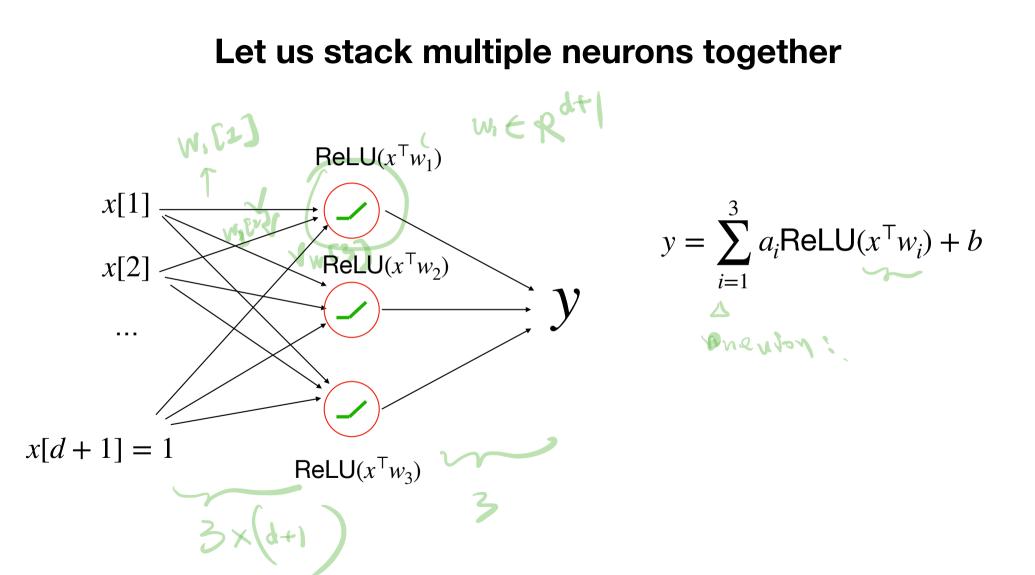


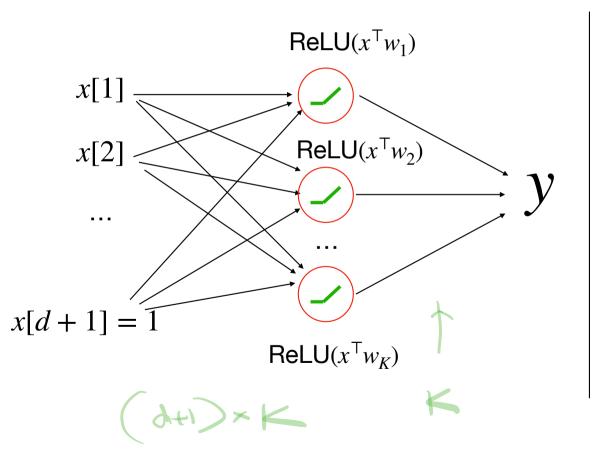


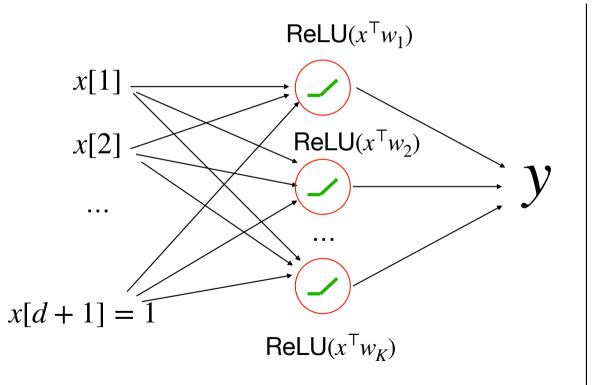






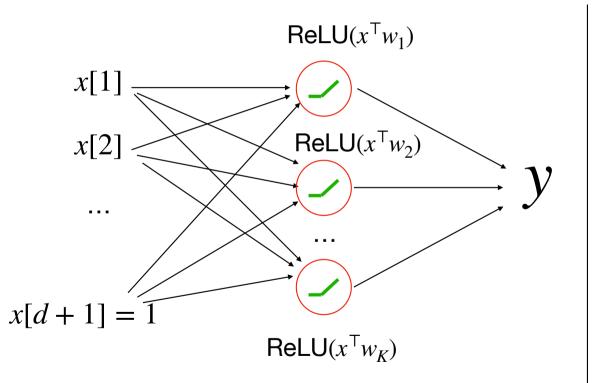






Vectorized form:

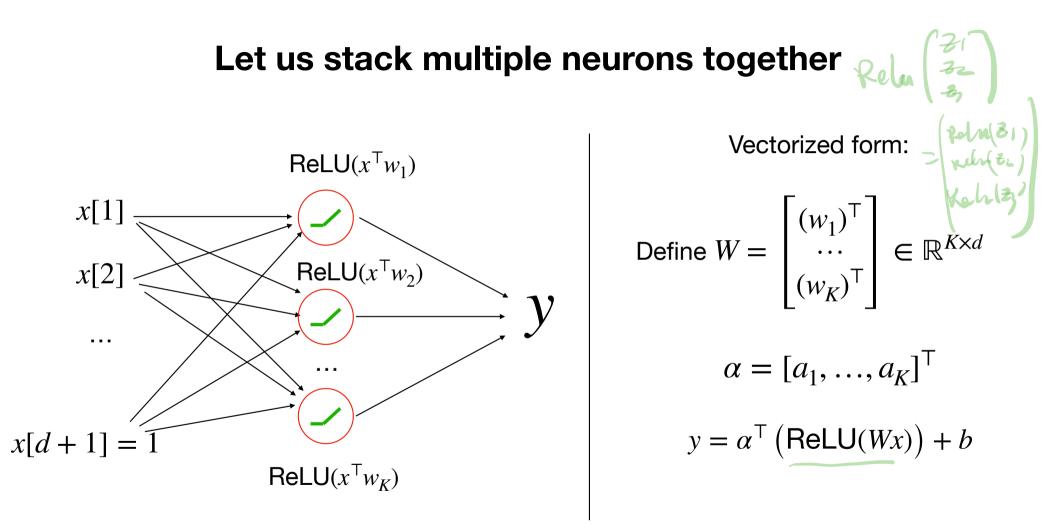
Define
$$W = \begin{bmatrix} (w_1)^T \\ \cdots \\ (w_K)^T \end{bmatrix} \in \mathbb{R}^{K \times d^{+1}}$$

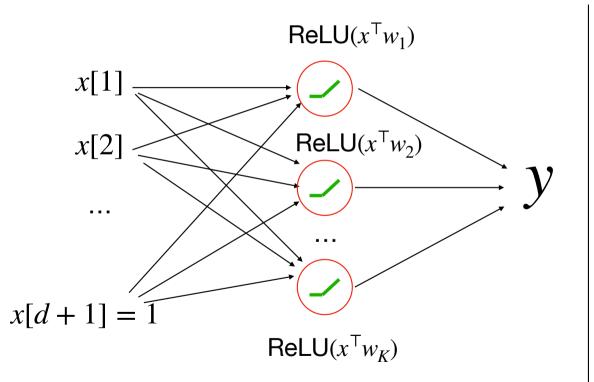


Vectorized form:

Define
$$W = \begin{bmatrix} (w_1)^T \\ \cdots \\ (w_K)^T \end{bmatrix} \in \mathbb{R}^{K \times d}$$

$$\alpha = [a_1, \dots, a_K]^\top$$





Vectorized form:

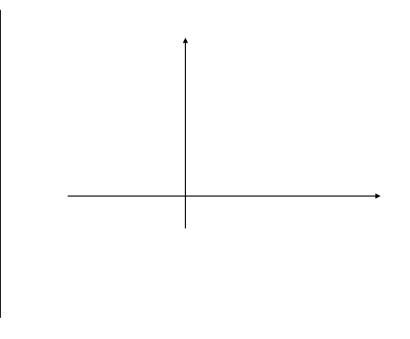
Define
$$W = \begin{bmatrix} (w_1)^T \\ \cdots \\ (w_K)^T \end{bmatrix} \in \mathbb{R}^{K \times d}$$
$$\alpha = [a_1, \dots, a_K]^T$$
$$y = \alpha^T ((\mathsf{ReLU}(Wx)) + b)$$

Learnable feature $\phi(x)$

 $y = \alpha^{T} (\text{ReLU}(Wx)) + b$ = $\sum_{i=1}^{K} a_{i} \text{Rely}(wix) + b$

 $y = \alpha^{\top} (\operatorname{ReLU}(Wx)) + b$

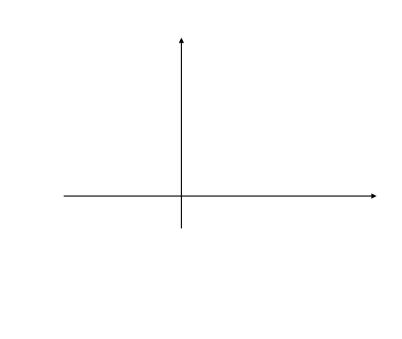
It's a pieces wise linear functions



 $y = \alpha^{\top} (\mathsf{ReLU}(Wx)) + b$

It's a pieces wise linear functions

Consider d = 1 case (and assume b = 0):



 $y = \alpha^{\top} (\mathsf{ReLU}(Wx)) + b$

It's a pieces wise linear functions

Consider d = 1 case (and assume b = 0):

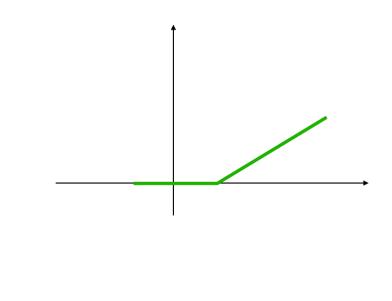
 $K = 1 : y = a_1 \max\{w_1 x + c_1, 0\}$

 $y = \alpha^{\top} (\mathsf{ReLU}(Wx)) + b$

It's a pieces wise linear functions

Consider d = 1 case (and assume b = 0):

 $K = 1 : y = a_1 \max\{w_1 x + c_1, 0\}$

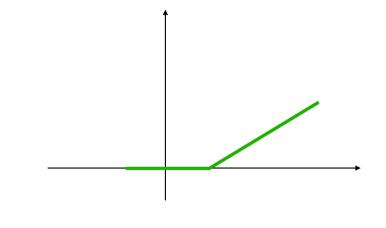


 $y = \alpha^{\top} (\operatorname{ReLU}(Wx)) + b$

It's a pieces wise linear functions

Consider d = 1 case (and assume b = 0):

 $K = 1 : y = a_1 \max\{w_1 x + c_1, 0\}$ $K = 2 : y = a_1 \max\{w_1 x + c_1, 0\}$ $+a_2 \max\{w_2 x + c_2, 0\}$

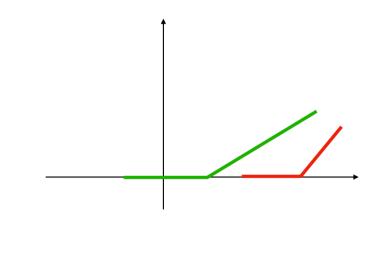


 $y = \alpha^{\top} (\operatorname{ReLU}(Wx)) + b$

It's a pieces wise linear functions

Consider d = 1 case (and assume b = 0):

 $K = 1 : y = a_1 \max\{w_1 x + c_1, 0\}$ $K = 2 : y = a_1 \max\{w_1 x + c_1, 0\}$ $+a_2 \max\{w_2 x + c_2, 0\}$

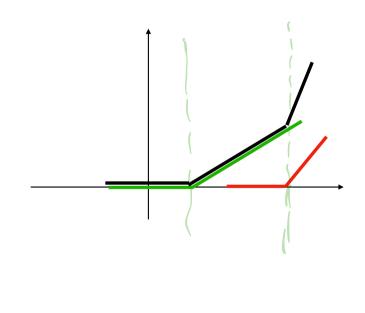


 $y = \alpha^{\top} (\operatorname{ReLU}(Wx)) + b$

It's a pieces wise linear functions

Consider d = 1 case (and assume b = 0):

 $K = 1 : y = a_1 \max\{w_1 x + c_1, 0\}$ $K = 2 : y = a_1 \max\{w_1 x + c_1, 0\}$ $+a_2 \max\{w_2 x + c_2, 0\}$

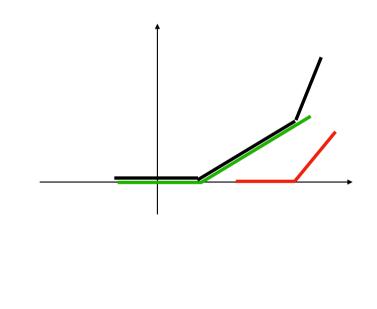


 $y = \alpha^{\top} (\operatorname{ReLU}(Wx)) + b$

It's a pieces wise linear functions

Consider d = 1 case (and assume b = 0):

 $K = 1 : y = a_1 \max\{w_1 x + c_1, 0\}$ $K = 2 : y = a_1 \max\{w_1 x + c_1, 0\}$ $+a_2 \max\{w_2 x + c_2, 0\}$ $K = 3 : y = a_1 \max\{w_1 x + c_1, 0\}$ $+a_2 \max\{w_2 x + c_2, 0\}$ $+a_3 \max\{w_3 x + c_3, 0\}$



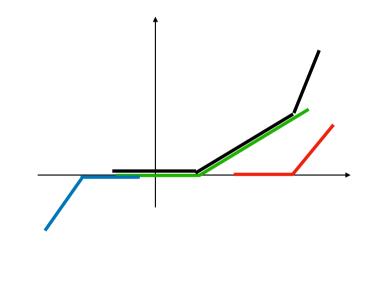
 $y = \alpha^{\top} (\operatorname{ReLU}(Wx)) + b$

It's a pieces wise linear functions

Consider d = 1 case (and assume b = 0):

 $K = 1 : y = a_1 \max\{w_1 x + c_1, 0\}$ $K = 2 : y = a_1 \max\{w_1 x + c_1, 0\}$ $+a_2 \max\{w_2 x + c_2, 0\}$ $K = 3 : y = a_1 \max\{w_1 x + c_1, 0\}$ $+a_2 \max\{w_2 x + c_2, 0\}$

 $+a_3 \max\{w_3 x + c_3, 0\}$



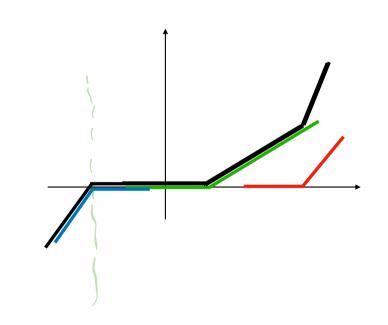
 $y = \alpha^{\top} (\operatorname{ReLU}(Wx)) + b$

It's a pieces wise linear functions

Consider d = 1 case (and assume b = 0):

 $K = 1 : y = a_1 \max\{w_1 x + c_1, 0\}$ $K = 2 : y = a_1 \max\{w_1 x + c_1, 0\}$ $+a_2 \max\{w_2 x + c_2, 0\}$ $K = 3 : y = a_1 \max\{w_1 x + c_1, 0\}$ $+a_2 \max\{w_2 x + c_2, 0\}$

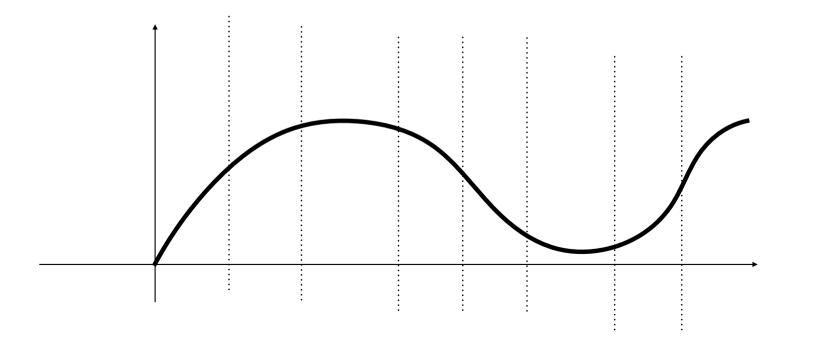
 $+a_{2}\max\{w_{2}x + c_{2}, 0\}$ $+a_{3}\max\{w_{3}x + c_{3}, 0\}$



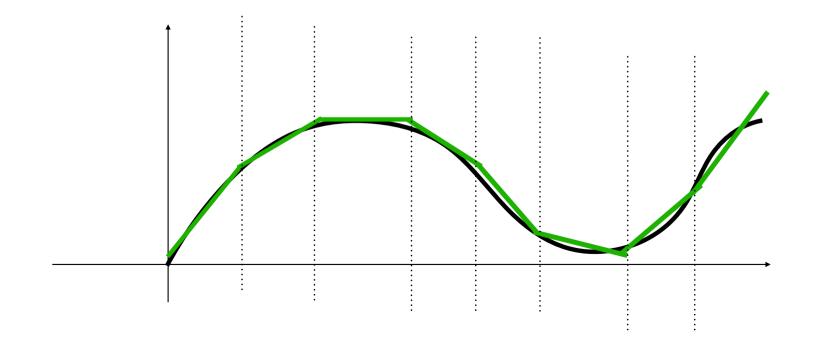
 $y = \alpha^{\top} (\mathsf{ReLU}(Wx)) + b$

Claim: a wide enough one layer NN can approximate any smooth functions

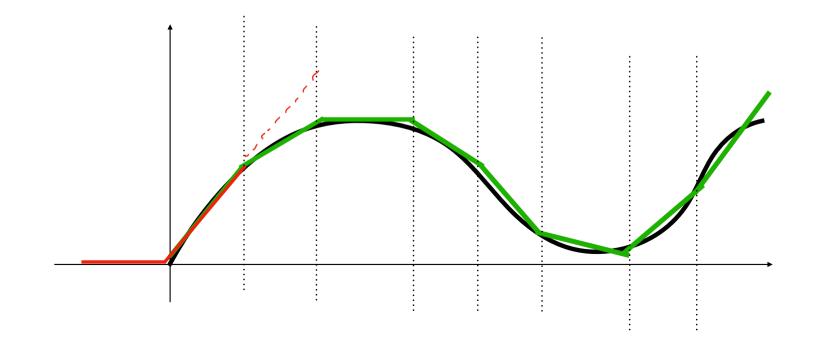
 $y = \alpha^{\top} (\mathsf{ReLU}(Wx)) + b$



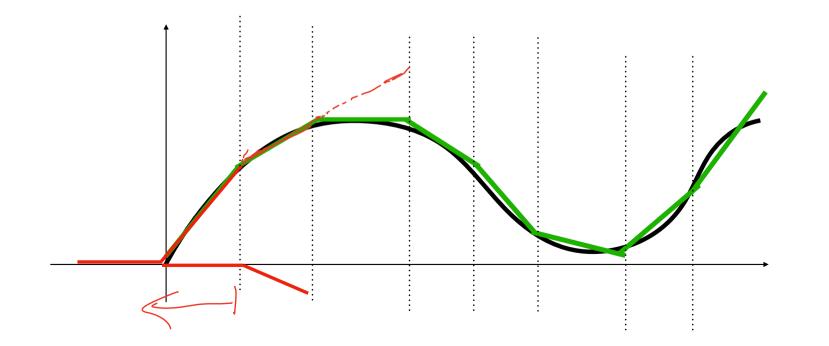
 $y = \alpha^{\top} (\mathsf{ReLU}(Wx)) + b$



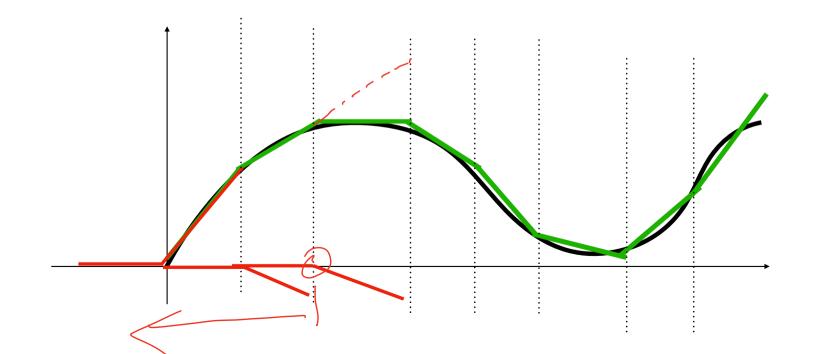
 $y = \alpha^{\top} (\mathsf{ReLU}(Wx)) + b$



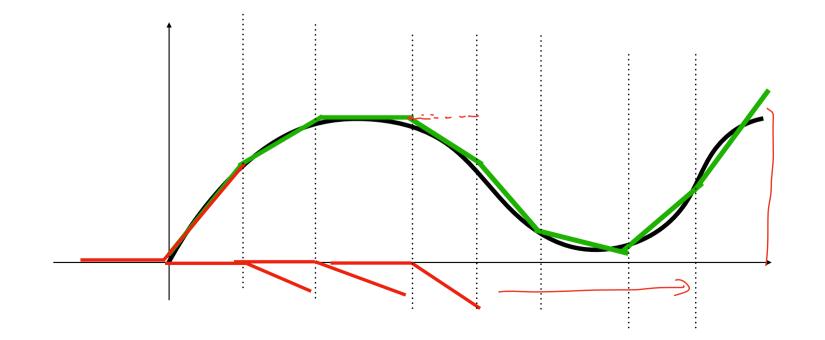
 $y = \alpha^{\top} (\mathsf{ReLU}(Wx)) + b$

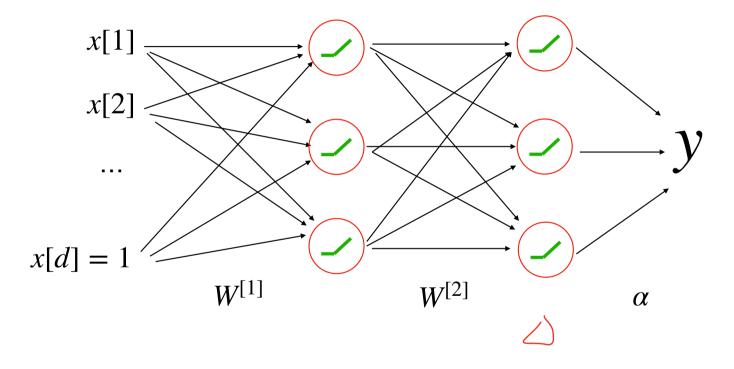


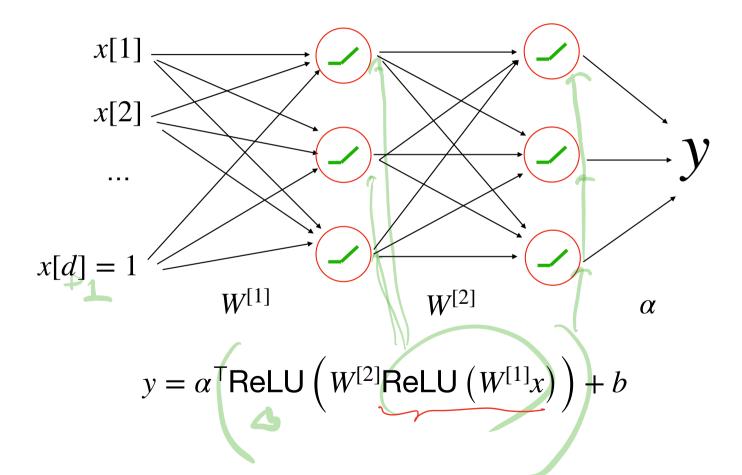
 $y = \alpha^{\top} (\mathsf{ReLU}(Wx)) + b$

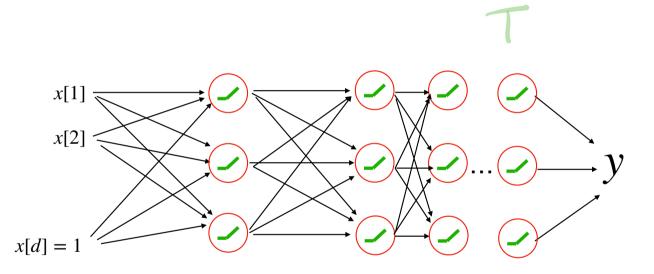


 $y = \alpha^{\top} (\mathsf{ReLU}(Wx)) + b$

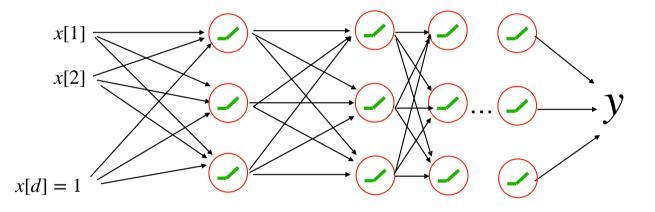


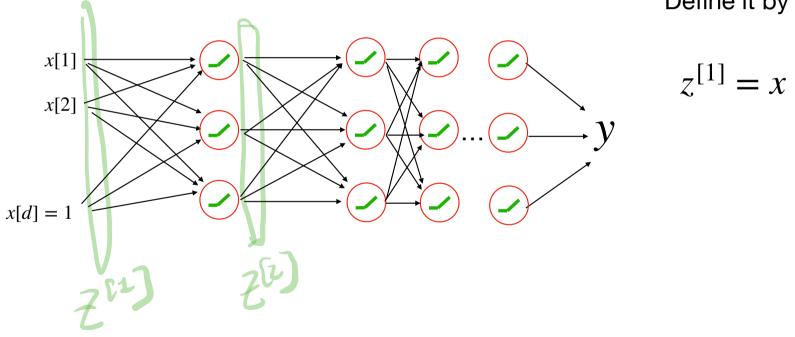






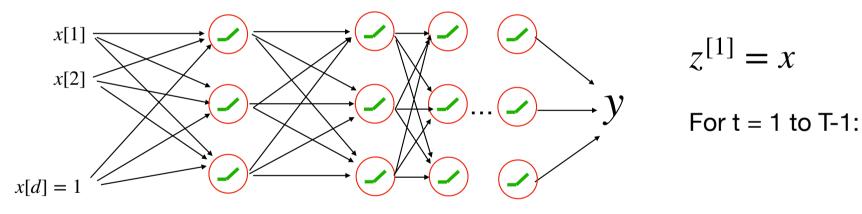
Define it by a forward pass:

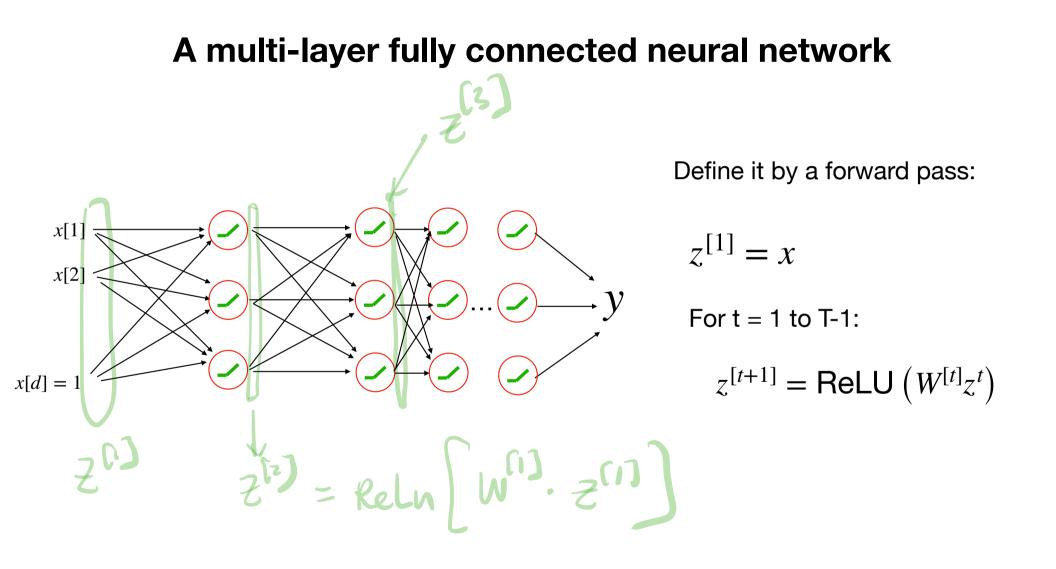


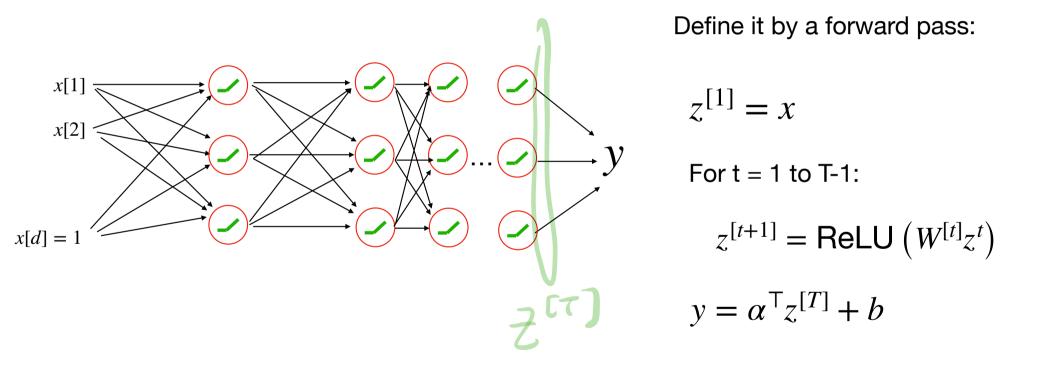


Define it by a forward pass:

Define it by a forward pass:







The benefits of going deep

