
Neural Network

Announcements

Recap on Boosting

Boosting iteratively learns a new classifier, and add it to the ensemble

For t = 1 …

Initialize H1 = h1 ∈ ℋ

Recap on Boosting

Boosting iteratively learns a new classifier, and add it to the ensemble

For t = 1 …

Initialize H1 = h1 ∈ ℋ

Denote ŷ = [Ht(x1), Ht(x2), …, Ht(xn)]⊤ ∈ ℝn

Recap on Boosting

Boosting iteratively learns a new classifier, and add it to the ensemble

For t = 1 …

Initialize H1 = h1 ∈ ℋ
−∇L(ŷ)

[
h(x1)…
h(xn)]

Denote ŷ = [Ht(x1), Ht(x2), …, Ht(xn)]⊤ ∈ ℝn

Recap on Boosting

Boosting iteratively learns a new classifier, and add it to the ensemble

For t = 1 …

Initialize H1 = h1 ∈ ℋ

Solve the optimization problem: ht+1 = arg max
h∈ℋ ⟨[

h(x1)…
h(xn)], − ∇L(ŷ)⟩

−∇L(ŷ)

[
h(x1)…
h(xn)]

Denote ŷ = [Ht(x1), Ht(x2), …, Ht(xn)]⊤ ∈ ℝn

Recap on Boosting

Boosting iteratively learns a new classifier, and add it to the ensemble

For t = 1 …

Initialize H1 = h1 ∈ ℋ

Solve the optimization problem: ht+1 = arg max
h∈ℋ ⟨[

h(x1)…
h(xn)], − ∇L(ŷ)⟩

−∇L(ŷ)

[
h(x1)…
h(xn)]

Ht+1 = Ht + αht+1

Denote ŷ = [Ht(x1), Ht(x2), …, Ht(xn)]⊤ ∈ ℝn

Recap on AdaBoost

Adaboost follows this framework with ℓ(̂y, y) = exp(− ̂y ⋅ y)

1. Create a new weighted dataset:

Recap on AdaBoost

Adaboost follows this framework with ℓ(̂y, y) = exp(− ̂y ⋅ y)

1. Create a new weighted dataset:

For each , compute xi pi ∝ exp(− ̂yi ⋅ yi)

Recap on AdaBoost

Adaboost follows this framework with ℓ(̂y, y) = exp(− ̂y ⋅ y)

1. Create a new weighted dataset:

For each , compute xi pi ∝ exp(− ̂yi ⋅ yi)

Binary classification: ht+1 = arg min
h∈ℋ ∑

i
pi ⋅ 1{h(xi) ≠ yi}

Recap on AdaBoost

Adaboost follows this framework with ℓ(̂y, y) = exp(− ̂y ⋅ y)

1. Create a new weighted dataset:

For each , compute xi pi ∝ exp(− ̂yi ⋅ yi)

Binary classification: ht+1 = arg min
h∈ℋ ∑

i
pi ⋅ 1{h(xi) ≠ yi}

2. Add new learner to the ensemble:

Recap on AdaBoost

Adaboost follows this framework with ℓ(̂y, y) = exp(− ̂y ⋅ y)

1. Create a new weighted dataset:

For each , compute xi pi ∝ exp(− ̂yi ⋅ yi)

Binary classification: ht+1 = arg min
h∈ℋ ∑

i
pi ⋅ 1{h(xi) ≠ yi}

2. Add new learner to the ensemble:

Ht+1 = Ht + 1
2 ln 1 − ϵ

ϵ
⋅ ht+1

Outline of Today

1. Analysis of Boosting

2. Multilayer feedforward Neural Network

3. Training a neural network

The definition of Weak learning

+̃ = {pi, xi, yi}, where ∑
i

pi = 1, pi ≥ 0,∀i

ht+1 = arg min
h∈ℋ

n

∑
i=1

pi ⋅ 1(h(xi) ≠ yi)

Each weaker learning optimizes its own data:

The definition of Weak learning

+̃ = {pi, xi, yi}, where ∑
i

pi = 1, pi ≥ 0,∀i

ht+1 = arg min
h∈ℋ

n

∑
i=1

pi ⋅ 1(h(xi) ≠ yi)

Assume that weaker learner’s loss ϵ :=
n

∑
i=1

pi1{ht+1(xi) ≠ yi} ≤ 1
2 − γ, γ > 0

Each weaker learning optimizes its own data:

The definition of Weak learning

+̃ = {pi, xi, yi}, where ∑
i

pi = 1, pi ≥ 0,∀i

ht+1 = arg min
h∈ℋ

n

∑
i=1

pi ⋅ 1(h(xi) ≠ yi)

Assume that weaker learner’s loss ϵ :=
n

∑
i=1

pi1{ht+1(xi) ≠ yi} ≤ 1
2 − γ, γ > 0

Each weaker learning optimizes its own data:

Q: assume is symmetric, i.e., iff , why does the above always hold? ℋ h ∈ ℋ −h ∈ ℋ

Weaker learnability implies approximating gradient well

ŷ

−∇L(ŷ)

[ht+1(x1), …, ht+1(xn)]⊤

Assume that weaker learner’s loss ϵ :=
n

∑
i=1

pi1{ht+1(xi) ≠ yi} ≤ 1
2 − γ, γ > 0

Weaker learnability implies approximating gradient well

ŷ

−∇L(ŷ)

(− ∇L(ŷ))⊤[
ht+1(x1)…
hh+1(xn)]

[ht+1(x1), …, ht+1(xn)]⊤

Assume that weaker learner’s loss ϵ :=
n

∑
i=1

pi1{ht+1(xi) ≠ yi} ≤ 1
2 − γ, γ > 0

Weaker learnability implies approximating gradient well

ŷ

−∇L(ŷ)

(− ∇L(ŷ))⊤[
ht+1(x1)…
hh+1(xn)]

≥ (
n

∑
j=1

|wj |)2γ > 0
[ht+1(x1), …, ht+1(xn)]⊤

Assume that weaker learner’s loss ϵ :=
n

∑
i=1

pi1{ht+1(xi) ≠ yi} ≤ 1
2 − γ, γ > 0

Weaker learnability implies approximating gradient well

ŷ

−∇L(ŷ)

(− ∇L(ŷ))⊤[
ht+1(x1)…
hh+1(xn)]

≥ (
n

∑
j=1

|wj |)2γ > 0

Within 90 degree, so
improve the objective!

[ht+1(x1), …, ht+1(xn)]⊤

Assume that weaker learner’s loss ϵ :=
n

∑
i=1

pi1{ht+1(xi) ≠ yi} ≤ 1
2 − γ, γ > 0

Formal Convergence of AdaBoost

Then after T iterations, for the original exp loss, we have

1
n

n

∑
i=1

exp(−HT(xi) ⋅ yi) ≤ n(1 − 4γ2)T/2

(Proof in lecture note, optional)

Formal Convergence of AdaBoost

Then after T iterations, for the original exp loss, we have

1
n

n

∑
i=1

exp(−HT(xi) ⋅ yi) ≤ n(1 − 4γ2)T/2

Note zero-one loss is upper bounded by exponential loss

(Proof in lecture note, optional)

Formal Convergence of AdaBoost

Then after T iterations, for the original exp loss, we have

1
n

n

∑
i=1

exp(−HT(xi) ⋅ yi) ≤ n(1 − 4γ2)T/2

Note zero-one loss is upper bounded by exponential loss

1
n

n

∑
i=1

1{sign(HT(xi)) ≠ yi} ≤ 1
n

n

∑
i=1

exp(−HT(xi) ⋅ yi) ≤ n(1 − 4γ2)T/2

(Proof in lecture note, optional)

Thinking about Boosting via two player zero sum game

h

(x, y)

1{h(x) ≠ y}

|ℋ | = m

|+ | = n

Thinking about Boosting via two player zero sum game

h

(x, y)

1{h(x) ≠ y}

|ℋ | = m

Row player plays hypothesis h ∈ ℋ
Column player plays example (x, y)

|+ | = n

Thinking about Boosting via two player zero sum game

h

(x, y)

1{h(x) ≠ y}

|ℋ | = m

Row player plays hypothesis h ∈ ℋ
Column player plays example (x, y)

Row player gets loss 1{h(x) ≠ y}

|+ | = n

Thinking about Boosting via two player zero sum game

h

(x, y)

1{h(x) ≠ y}

|ℋ | = m

Row player plays hypothesis h ∈ ℋ
Column player plays example (x, y)

Row player gets loss 1{h(x) ≠ y}
Column player gets loss −1{h(x) ≠ y}

|+ | = n

Thinking about Boosting via two player zero sum game

h

(x, y)

1{h(x) ≠ y}

|ℋ | = m

Row player plays hypothesis h ∈ ℋ
Column player plays example (x, y)

Row player gets loss 1{h(x) ≠ y}
Column player gets loss −1{h(x) ≠ y}

Boosting can be understood as running some
specific algorithm to find the Nash equilibrium of

the game

|+ | = n

Outline of Today

1. Analysis of Boosting

2. Multilayer feedforward Neural Network

3. Training a neural network

Linear Regression Revisit

Size of the house

Price y = w1x + w0

Linear Regression Revisit

Negative part does not
make too much sense

Size of the house

Price y = w1x + w0

Linear Regression Revisit

Negative part does not
make too much sense

Size of the house

Price y = w1x + w0
We can fix this with a simple

nonlinear function

y = max{w1x + w0, 0}

Linear Regression Revisit

Negative part does not
make too much sense

Size of the house

Price y = w1x + w0
We can fix this with a simple

nonlinear function

y = max{w1x + w0, 0}

y = max{w1x + w0,0}

Linear Regression Revisit

Negative part does not
make too much sense

Size of the house

Price y = w1x + w0
We can fix this with a simple

nonlinear function

y = max{w1x + w0, 0}

y = max{w1x + w0,0}

rectified linear unit (ReLU)

A single neuron network

y = max{w1x + w0,0}

A single neuron network

y = max{w1x + w0,0}

y = − max{w1x + w0,0}

A single neuron network

y = max{w1x + w0,0}

y = − max{w1x + w0,0}

y = a max{w1x + w0,0} + b

A single neuron network

x[1]

x[2]

…

x[d + 1] = 1

y
w1

w2

wd+1

a, b

A single neuron network

x[1]

x[2]

…

x[d + 1] = 1

y
w1

w2

wd+1

a, b

max{w1x[1] + … + wd+1x[d + 1],0}

A single neuron network

x[1]

x[2]

…

x[d + 1] = 1

y
w1

w2

wd+1

a, b

max{w1x[1] + … + wd+1x[d + 1],0}

y = aReLU(w⊤x) + b

Let us stack multiple neurons together

x[1]

x[2]

…

x[d + 1] = 1

y

ReLU(x⊤w1)

ReLU(x⊤w2)

ReLU(x⊤w3)

y =
3

∑
i=1

aiReLU(x⊤wi) + b

Let us stack multiple neurons together

x[1]

x[2]

…

x[d + 1] = 1

y

ReLU(x⊤w1)

ReLU(x⊤w2)

ReLU(x⊤wK)

…

Let us stack multiple neurons together

x[1]

x[2]

…

x[d + 1] = 1

y

ReLU(x⊤w1)

ReLU(x⊤w2)

ReLU(x⊤wK)

…

Vectorized form:

Define W =
(w1)⊤

…
(wK)⊤

∈ ℝK×d

Let us stack multiple neurons together

x[1]

x[2]

…

x[d + 1] = 1

y

ReLU(x⊤w1)

ReLU(x⊤w2)

ReLU(x⊤wK)

…

Vectorized form:

Define W =
(w1)⊤

…
(wK)⊤

∈ ℝK×d

α = [a1, …, aK]⊤

Let us stack multiple neurons together

x[1]

x[2]

…

x[d + 1] = 1

y

ReLU(x⊤w1)

ReLU(x⊤w2)

ReLU(x⊤wK)

…

Vectorized form:

Define W =
(w1)⊤

…
(wK)⊤

∈ ℝK×d

α = [a1, …, aK]⊤

y = α⊤ (ReLU(Wx)) + b

Let us stack multiple neurons together

x[1]

x[2]

…

x[d + 1] = 1

y

ReLU(x⊤w1)

ReLU(x⊤w2)

ReLU(x⊤wK)

…

Vectorized form:

Define W =
(w1)⊤

…
(wK)⊤

∈ ℝK×d

α = [a1, …, aK]⊤

y = α⊤ (ReLU(Wx)) + b

Learnable feature ϕ(x)

What does a neural network approximate

y = α⊤ (ReLU(Wx)) + b

What does a neural network approximate

y = α⊤ (ReLU(Wx)) + b

It’s a pieces wise linear functions

What does a neural network approximate

y = α⊤ (ReLU(Wx)) + b

It’s a pieces wise linear functions

Consider case (and assume):d = 1 b = 0

What does a neural network approximate

y = α⊤ (ReLU(Wx)) + b

It’s a pieces wise linear functions

Consider case (and assume):d = 1 b = 0

K = 1 : y = a1 max{w1x + c1, 0}

What does a neural network approximate

y = α⊤ (ReLU(Wx)) + b

It’s a pieces wise linear functions

Consider case (and assume):d = 1 b = 0

K = 1 : y = a1 max{w1x + c1, 0}

What does a neural network approximate

y = α⊤ (ReLU(Wx)) + b

It’s a pieces wise linear functions

Consider case (and assume):d = 1 b = 0

K = 1 : y = a1 max{w1x + c1, 0}
K = 2 : y = a1 max{w1x + c1, 0}

+a2 max{w2x + c2, 0}

What does a neural network approximate

y = α⊤ (ReLU(Wx)) + b

It’s a pieces wise linear functions

Consider case (and assume):d = 1 b = 0

K = 1 : y = a1 max{w1x + c1, 0}
K = 2 : y = a1 max{w1x + c1, 0}

+a2 max{w2x + c2, 0}

What does a neural network approximate

y = α⊤ (ReLU(Wx)) + b

It’s a pieces wise linear functions

Consider case (and assume):d = 1 b = 0

K = 1 : y = a1 max{w1x + c1, 0}
K = 2 : y = a1 max{w1x + c1, 0}

+a2 max{w2x + c2, 0}

What does a neural network approximate

y = α⊤ (ReLU(Wx)) + b

It’s a pieces wise linear functions

Consider case (and assume):d = 1 b = 0

K = 1 : y = a1 max{w1x + c1, 0}
K = 2 : y = a1 max{w1x + c1, 0}

+a2 max{w2x + c2, 0}

K = 3 : y = a1 max{w1x + c1, 0}
+a2 max{w2x + c2, 0}

+a3 max{w3x + c3, 0}

What does a neural network approximate

y = α⊤ (ReLU(Wx)) + b

It’s a pieces wise linear functions

Consider case (and assume):d = 1 b = 0

K = 1 : y = a1 max{w1x + c1, 0}
K = 2 : y = a1 max{w1x + c1, 0}

+a2 max{w2x + c2, 0}

K = 3 : y = a1 max{w1x + c1, 0}
+a2 max{w2x + c2, 0}

+a3 max{w3x + c3, 0}

What does a neural network approximate

y = α⊤ (ReLU(Wx)) + b

It’s a pieces wise linear functions

Consider case (and assume):d = 1 b = 0

K = 1 : y = a1 max{w1x + c1, 0}
K = 2 : y = a1 max{w1x + c1, 0}

+a2 max{w2x + c2, 0}

K = 3 : y = a1 max{w1x + c1, 0}
+a2 max{w2x + c2, 0}

+a3 max{w3x + c3, 0}

What does a neural network approximate
y = α⊤ (ReLU(Wx)) + b

Claim: a wide enough one layer NN can approximate any smooth functions

What does a neural network approximate
y = α⊤ (ReLU(Wx)) + b

Claim: a wide enough one layer NN can approximate any smooth functions

What does a neural network approximate
y = α⊤ (ReLU(Wx)) + b

Claim: a wide enough one layer NN can approximate any smooth functions

What does a neural network approximate
y = α⊤ (ReLU(Wx)) + b

Claim: a wide enough one layer NN can approximate any smooth functions

What does a neural network approximate
y = α⊤ (ReLU(Wx)) + b

Claim: a wide enough one layer NN can approximate any smooth functions

What does a neural network approximate
y = α⊤ (ReLU(Wx)) + b

Claim: a wide enough one layer NN can approximate any smooth functions

What does a neural network approximate
y = α⊤ (ReLU(Wx)) + b

Claim: a wide enough one layer NN can approximate any smooth functions

A multi-layer fully connected neural network

x[1]

x[2]

…

x[d] = 1

y

W[1] W[2] α

A multi-layer fully connected neural network

x[1]

x[2]

…

x[d] = 1

y

W[1] W[2] α

y = α⊤ReLU (W[2]ReLU (W[1]x)) + b

A multi-layer fully connected neural network

x[1]

x[2]

…

x[d] = 1

y… ……

A multi-layer fully connected neural network

x[1]

x[2]

…

x[d] = 1

y… ……

Define it by a forward pass:

A multi-layer fully connected neural network

x[1]

x[2]

…

x[d] = 1

y… …

z[1] = x
…

Define it by a forward pass:

A multi-layer fully connected neural network

x[1]

x[2]

…

x[d] = 1

y… … For t = 1 to T-1:

z[1] = x
…

Define it by a forward pass:

A multi-layer fully connected neural network

x[1]

x[2]

…

x[d] = 1

y… … For t = 1 to T-1:

z[1] = x

z[t+1] = ReLU (W[t]zt)

…

Define it by a forward pass:

A multi-layer fully connected neural network

x[1]

x[2]

…

x[d] = 1

y… … For t = 1 to T-1:

z[1] = x

z[t+1] = ReLU (W[t]zt)
y = α⊤z[T] + b

…

Define it by a forward pass:

The benefits of going deep

x[1]

x[2]

…

x[d] = 1

y… …

The benefits of going deep

Allows us to represent complicated functions without making NN too wide

x[1]

x[2]

…

x[d] = 1

y… …

