Neural Network

Announcements

Recap on Boosting

Boosting iteratively learns a new classifier, and add it to the ensemble

Initialize $H_{1}=h_{1} \in \mathscr{H}$
For $\mathrm{t}=1 \ldots$

Recap on Boosting

Boosting iteratively learns a new classifier, and add it to the ensemble

Initialize $H_{1}=h_{1} \in \mathscr{H}$
For $\mathrm{t}=1 \ldots$

$$
\text { Denote } \hat{\mathbf{y}}=\left[H_{t}\left(x_{1}\right), H_{t}\left(x_{2}\right), \ldots, H_{t}\left(x_{n}\right)\right]^{\top} \in \mathbb{R}^{n}
$$

Recap on Boosting

Boosting iteratively learns a new classifier, and add it to the ensemble

Initialize $H_{1}=h_{1} \in \mathscr{H}$
For $t=1 \ldots$

$$
\text { Denote } \hat{\mathbf{y}}=\left[H_{t}\left(x_{1}\right), H_{t}\left(x_{2}\right), \ldots, H_{t}\left(x_{n}\right)\right]^{\top} \in \mathbb{R}^{n}
$$

Recap on Boosting

Boosting iteratively learns a new classifier, and add it to the ensemble Initialize $H_{1}=h_{1} \in \mathscr{H}$
For $\mathrm{t}=1 \ldots$

$$
\text { Denote } \hat{\mathbf{y}}=\left[H_{t}\left(x_{1}\right), H_{t}\left(x_{2}\right), \ldots, H_{t}\left(x_{n}\right)\right]^{\top} \in \mathbb{R}^{n}
$$

Solve the optimization problem: $h_{t+1}=\arg \max _{h \in \mathscr{H}}\left\langle\left[\begin{array}{c}h\left(x_{1}\right) \\ \cdots \\ h\left(x_{n}\right)\end{array}\right],-\nabla L(\hat{\mathbf{y}})\right\rangle$

Recap on Boosting

Boosting iteratively learns a new classifier, and add it to the ensemble Initialize $H_{1}=h_{1} \in \mathscr{H}$
For $\mathrm{t}=1 \ldots$

$$
\begin{aligned}
& \text { Denote } \hat{\mathbf{y}}=\left[H_{t}\left(x_{1}\right), H_{t}\left(x_{2}\right), \ldots, H_{t}\left(x_{n}\right)\right]^{\top} \in \mathbb{R}^{n} \\
& \text { Solve the optimization problem: } h_{t+1}=\arg \max _{h \in \mathscr{H}}\left\langle\left[\begin{array}{c}
h\left(x_{1}\right) \\
\cdots \\
h\left(x_{n}\right)
\end{array}\right],-\nabla L(\hat{\mathbf{y}})\right\rangle \\
& H_{t+1}=H_{t}+\alpha h_{t+1}
\end{aligned}
$$

Recap on AdaBoost

Adaboost follows this framework with $\ell(\hat{y}, y)=\exp (-\hat{y} \cdot y)$

1. Create a new weighted dataset:

Recap on AdaBoost

Adaboost follows this framework with $\ell(\hat{y}, y)=\exp (-\hat{y} \cdot y)$

1. Create a new weighted dataset:

For each x_{i}, compute $p_{i} \propto \exp \left(-\hat{y}_{i} \cdot y_{i}\right)$

Recap on AdaBoost

Adaboost follows this framework with $\ell(\hat{y}, y)=\exp (-\hat{y} \cdot y)$

1. Create a new weighted dataset:

For each x_{i}, compute $p_{i} \propto \exp \left(-\hat{y}_{i} \cdot y_{i}\right)$
Binary classification: $h_{t+1}=\arg \min _{h \in \mathscr{H}} \sum_{i} p_{i} \cdot \mathbf{1}\left\{h\left(x_{i}\right) \neq y_{i}\right\}$

Recap on AdaBoost

Adaboost follows this framework with $\ell(\hat{y}, y)=\exp (-\hat{y} \cdot y)$

1. Create a new weighted dataset:

For each x_{i}, compute $p_{i} \propto \exp \left(-\hat{y}_{i} \cdot y_{i}\right)$
Binary classification: $h_{t+1}=\arg \min _{h \in \mathscr{H}} \sum_{i} p_{i} \cdot \mathbf{1}\left\{h\left(x_{i}\right) \neq y_{i}\right\}$
2. Add new learner to the ensemble:

Recap on AdaBoost

Adaboost follows this framework with $\ell(\hat{y}, y)=\exp (-\hat{y} \cdot y)$

1. Create a new weighted dataset:

For each x_{i}, compute $p_{i} \propto \exp \left(-\hat{y}_{i} \cdot y_{i}\right)$
Binary classification: $h_{t+1}=\arg \min _{h \in \mathscr{H}} \sum_{i} p_{i} \cdot \mathbf{1}\left\{h\left(x_{i}\right) \neq y_{i}\right\}$
2. Add new learner to the ensemble:

$$
H_{t+1}=H_{t}+\frac{1}{2} \ln \frac{1-\epsilon}{\epsilon} \cdot h_{t+1}
$$

Outline of Today

\author{

1. Analysis of Boosting
}
2. Multilayer feedforward Neural Network
3. Training a neural network

The definition of Weak learning

Each weaker learning optimizes its own data:

$$
\begin{gathered}
\widetilde{\mathscr{D}}=\left\{p_{i}, x_{i}, y_{i}\right\}, \text { where } \sum_{i} p_{i}=1, p_{i} \geq 0, \forall i \\
h_{t+1}=\arg \min _{h \in \mathscr{H}} \sum_{i=1}^{n} p_{i} \cdot \mathbf{1}\left(h\left(x_{i}\right) \neq y_{i}\right)
\end{gathered}
$$

The definition of Weak learning

Each weaker learning optimizes its own data:

$$
\begin{gathered}
\widetilde{\mathscr{D}}=\left\{p_{i}, x_{i}, y_{i}\right\}, \text { where } \sum_{i} p_{i}=1, p_{i} \geq 0, \forall i \\
h_{t+1}=\arg \min _{h \in \mathscr{H}} \sum_{i=1}^{n} p_{i} \cdot \mathbf{1}\left(h\left(x_{i}\right) \neq y_{i}\right)
\end{gathered}
$$

Assume that weaker learner's loss $\epsilon:=\sum_{i=1}^{n} p_{i} 1\left\{h_{t+1}\left(x_{i}\right) \neq y_{i}\right\} \leq \frac{1}{2}-\gamma, \gamma>0$

The definition of Weak learning

Each weaker learning optimizes its own data:

$$
\begin{gathered}
\widetilde{\mathscr{D}}=\left\{p_{i}, x_{i}, y_{i}\right\}, \text { where } \sum_{i} p_{i}=1, p_{i} \geq 0, \forall i \\
h_{t+1}=\arg \min _{h \in \mathscr{H}} \sum_{i=1}^{n} p_{i} \cdot \mathbf{1}\left(h\left(x_{i}\right) \neq y_{i}\right)
\end{gathered}
$$

Assume that weaker learner's loss $\epsilon:=\sum_{i=1}^{n} p_{i} \mathbf{1}\left\{h_{t+1}\left(x_{i}\right) \neq y_{i}\right\} \leq \frac{1}{2}-\gamma, \gamma>0$
Q: assume \mathscr{H} is symmetric, i.e., $h \in \mathscr{H}$ iff $-h \in \mathscr{H}$, why does the above always hold?

Weaker learnability implies approximating gradient well

Assume that weaker learner's loss $\epsilon:=\sum_{i=1}^{n} p_{i} 1\left\{h_{t+1}\left(x_{i}\right) \neq y_{i}\right\} \leq \frac{1}{2}-\gamma, \quad \gamma>0$ $-\nabla L(\hat{\mathbf{y}})$

Weaker learnability implies approximating gradient well

Assume that weaker learner's loss $\epsilon:=\sum_{i=1}^{n} p_{i} \mathbf{1}\left\{h_{t+1}\left(x_{i}\right) \neq y_{i}\right\} \leq \frac{1}{2}-\gamma, \gamma>0$

$$
(-\nabla L(\hat{\mathbf{y}}))^{\top}\left[\begin{array}{c}
h_{t+1}\left(x_{1}\right) \\
\ldots \\
h_{h+1}\left(x_{n}\right)
\end{array}\right]
$$

Weaker learnability implies approximating gradient well

Assume that weaker learner's loss $\epsilon:=\sum_{i=1}^{n} p_{i} 1\left\{h_{t+1}\left(x_{i}\right) \neq y_{i}\right\} \leq \frac{1}{2}-\gamma, \gamma>0$

$$
\begin{aligned}
& (-\nabla L(\hat{\mathbf{y}}))^{\top}\left[\begin{array}{c}
h_{t+1}\left(x_{1}\right) \\
\cdots \\
h_{h+1}\left(x_{n}\right)
\end{array}\right] \\
& \quad \geq\left(\sum_{j=1}^{n}\left|w_{j}\right|\right) 2 \gamma>0
\end{aligned}
$$

Weaker learnability implies approximating gradient well

Assume that weaker learner's loss $\epsilon:=\sum_{i=1}^{n} p_{i} 1\left\{h_{t+1}\left(x_{i}\right) \neq y_{i}\right\} \leq \frac{1}{2}-\gamma, \gamma>0$

$$
\begin{aligned}
& (-\nabla L(\hat{\mathbf{y}}))^{\top}\left[\begin{array}{c}
h_{t+1}\left(x_{1}\right) \\
\ldots \\
h_{h+1}\left(x_{n}\right)
\end{array}\right] \\
& \quad \geq\left(\sum_{j=1}^{n}\left|w_{j}\right|\right) 2 \gamma>0
\end{aligned}
$$

Within 90 degree, so improve the objective!

Formal Convergence of AdaBoost

Then after T iterations, for the original exp loss, we have

$$
\frac{1}{n} \sum_{i=1}^{n} \exp \left(-H_{T}\left(x_{i}\right) \cdot y_{i}\right) \leq n\left(1-4 \gamma^{2}\right)^{T / 2}
$$

Formal Convergence of AdaBoost

Then after T iterations, for the original exp loss, we have

$$
\frac{1}{n} \sum_{i=1}^{n} \exp \left(-H_{T}\left(x_{i}\right) \cdot y_{i}\right) \leq n\left(1-4 \gamma^{2}\right)^{T / 2}
$$

Note zero-one loss is upper bounded by exponential loss

Formal Convergence of AdaBoost

Then after T iterations, for the original exp loss, we have

$$
\frac{1}{n} \sum_{i=1}^{n} \exp \left(-H_{T}\left(x_{i}\right) \cdot y_{i}\right) \leq n\left(1-4 \gamma^{2}\right)^{T / 2}
$$

Note zero-one loss is upper bounded by exponential loss

$$
\frac{1}{n} \sum_{i=1}^{n} 1\left\{\operatorname{sign}\left(H_{T}\left(x_{i}\right)\right) \neq y_{i}\right\} \leq \frac{1}{n} \sum_{i=1}^{n} \exp \left(-H_{T}\left(x_{i}\right) \cdot y_{i}\right) \leq n\left(1-4 \gamma^{2}\right)^{T / 2}
$$

Thinking about Boosting via two player zero sum game
$|\mathscr{D}|=n$

Thinking about Boosting via two player zero sum game
$|\mathscr{D}|=n$

Row player plays hypothesis $h \in \mathscr{H}$ Column player plays example (x, y)

Thinking about Boosting via two player zero sum game
$|\mathscr{D}|=n$

Row player plays hypothesis $h \in \mathscr{H}$ Column player plays example (x, y)

Row player gets loss $\mathbf{1}\{h(x) \neq y\}$

Thinking about Boosting via two player zero sum game
$|\mathscr{D}|=n$

Row player plays hypothesis $h \in \mathscr{H}$ Column player plays example (x, y)

Row player gets loss $1\{h(x) \neq y\}$
Column player gets loss $\mathbf{- 1}\{h(x) \neq y\}$

Thinking about Boosting via two player zero sum game

$|\mathscr{D}|=n$

Row player plays hypothesis $h \in \mathscr{H}$
Column player plays example (x, y)

Row player gets loss $\mathbf{1}\{h(x) \neq y\}$
Column player gets loss $\mathbf{- 1}\{h(x) \neq y\}$

Boosting can be understood as running some specific algorithm to find the Nash equilibrium of the game

Outline of Today

1. Analysis of Boosting
2. Multilayer feedforward Neural Network
3. Training a neural network

Linear Regression Revisit

Linear Regression Revisit

Price $\xlongequal[\text { Size of the ho }]{ }$

Size of the house
Negative part does not
make too much sense

Linear Regression Revisit

Negative part does not make too much sense

We can fix this with a simple nonlinear function

$$
y=\max \left\{w_{1} x+w_{0}, 0\right\}
$$

Linear Regression Revisit

Negative part does not make too much sense

We can fix this with a simple nonlinear function

$$
y=\max \left\{w_{1} x+w_{0}, 0\right\}
$$

Linear Regression Revisit

Negative part does not make too much sense

We can fix this with a simple nonlinear function
$y=\max \left\{w_{1} x+w_{0}, 0\right\}$

A single neuron network

A single neuron network

A single neuron network

$$
y=a \max \left\{w_{1} x+w_{0}, 0\right\}+b
$$

A single neuron network

A single neuron network

A single neuron network

Let us stack multiple neurons together

Let us stack multiple neurons together

Let us stack multiple neurons together

Vectorized form:
Define $W=\left[\begin{array}{c}\left(w_{1}\right)^{\top} \\ \cdots \\ \left(w_{K}\right)^{\top}\end{array}\right] \in \mathbb{R}^{K \times d}$

Let us stack multiple neurons together

Vectorized form:

$$
\begin{gathered}
\text { Define } W=\left[\begin{array}{c}
\left(w_{1}\right)^{\top} \\
\cdots \\
\left(w_{K}\right)^{\top}
\end{array}\right] \in \mathbb{R}^{K \times d} \\
\alpha=\left[a_{1}, \ldots, a_{K}\right]^{\top}
\end{gathered}
$$

Let us stack multiple neurons together

Vectorized form:

$$
\begin{gathered}
\text { Define } W=\left[\begin{array}{c}
\left(w_{1}\right)^{\top} \\
\cdots \\
\left(w_{K}\right)^{\top}
\end{array}\right] \in \mathbb{R}^{K \times d} \\
\alpha=\left[a_{1}, \ldots, a_{K}\right]^{\top} \\
y=\alpha^{\top}(\operatorname{ReLU}(W x))+b
\end{gathered}
$$

Let us stack multiple neurons together

Vectorized form:

$$
\begin{gathered}
\text { Define } W=\left[\begin{array}{c}
\left(w_{1}\right)^{\top} \\
\cdots \\
\left(w_{K}\right)^{\top}
\end{array}\right] \in \mathbb{R}^{K \times d} \\
\alpha=\left[a_{1}, \ldots, a_{K}\right]^{\top} \\
y=\alpha^{\top}(\operatorname{ReLU}(W x))+b \\
\text { Learnable feature } \phi(x)
\end{gathered}
$$

What does a neural network approximate

$$
y=\alpha^{\top}(\operatorname{ReLU}(W x))+b
$$

What does a neural network approximate

$$
y=\alpha^{\top}(\operatorname{ReLU}(W x))+b
$$

It's a pieces wise linear functions

What does a neural network approximate

$$
y=\alpha^{\top}(\operatorname{ReLU}(W x))+b
$$

It's a pieces wise linear functions
Consider $d=1$ case (and assume $b=0$):

What does a neural network approximate

$$
y=\alpha^{\top}(\operatorname{ReLU}(W x))+b
$$

It's a pieces wise linear functions
Consider $d=1$ case (and assume $b=0$):

$$
K=1: y=a_{1} \max \left\{w_{1} x+c_{1}, 0\right\}
$$

What does a neural network approximate

$$
y=\alpha^{\top}(\operatorname{ReLU}(W x))+b
$$

It's a pieces wise linear functions
Consider $d=1$ case (and assume $b=0$):

$$
K=1: y=a_{1} \max \left\{w_{1} x+c_{1}, 0\right\}
$$

What does a neural network approximate

$$
y=\alpha^{\top}(\operatorname{ReLU}(W x))+b
$$

It's a pieces wise linear functions
Consider $d=1$ case (and assume $b=0$):

$$
\begin{aligned}
K=1: y= & a_{1} \max \left\{w_{1} x+c_{1}, 0\right\} \\
K=2: y= & a_{1} \max \left\{w_{1} x+c_{1}, 0\right\} \\
& +a_{2} \max \left\{w_{2} x+c_{2}, 0\right\}
\end{aligned}
$$

What does a neural network approximate

$$
y=\alpha^{\top}(\operatorname{ReLU}(W x))+b
$$

It's a pieces wise linear functions
Consider $d=1$ case (and assume $b=0$):

$$
\begin{aligned}
K=1: y= & a_{1} \max \left\{w_{1} x+c_{1}, 0\right\} \\
K=2: y= & a_{1} \max \left\{w_{1} x+c_{1}, 0\right\} \\
& +a_{2} \max \left\{w_{2} x+c_{2}, 0\right\}
\end{aligned}
$$

What does a neural network approximate

$$
y=\alpha^{\top}(\operatorname{ReLU}(W x))+b
$$

It's a pieces wise linear functions
Consider $d=1$ case (and assume $b=0$):

$$
\begin{aligned}
K=1: y= & a_{1} \max \left\{w_{1} x+c_{1}, 0\right\} \\
K=2: y= & a_{1} \max \left\{w_{1} x+c_{1}, 0\right\} \\
& +a_{2} \max \left\{w_{2} x+c_{2}, 0\right\}
\end{aligned}
$$

What does a neural network approximate

$$
y=\alpha^{\top}(\operatorname{ReLU}(W x))+b
$$

It's a pieces wise linear functions
Consider $d=1$ case (and assume $b=0$):

$$
\left.\begin{array}{rl}
K=1: y= & a_{1} \max \left\{w_{1} x+c_{1}, 0\right\} \\
K=2: y= & a_{1} \max \left\{w_{1} x+c_{1}, 0\right\} \\
& +a_{2} \max \left\{w_{2} x+c_{2}, 0\right\}
\end{array}\right\} \begin{aligned}
K=3: y= & a_{1} \max \left\{w_{1} x+c_{1}, 0\right\} \\
& +a_{2} \max \left\{w_{2} x+c_{2}, 0\right\} \\
& +a_{3} \max \left\{w_{3} x+c_{3}, 0\right\}
\end{aligned}
$$

What does a neural network approximate

$$
y=\alpha^{\top}(\operatorname{ReLU}(W x))+b
$$

It's a pieces wise linear functions
Consider $d=1$ case (and assume $b=0$):

$$
\left.\begin{array}{rl}
K=1: y= & a_{1} \max \left\{w_{1} x+c_{1}, 0\right\} \\
K=2: y= & a_{1} \max \left\{w_{1} x+c_{1}, 0\right\} \\
& +a_{2} \max \left\{w_{2} x+c_{2}, 0\right\}
\end{array}\right\} \begin{aligned}
K=3: y= & a_{1} \max \left\{w_{1} x+c_{1}, 0\right\} \\
& +a_{2} \max \left\{w_{2} x+c_{2}, 0\right\} \\
& +a_{3} \max \left\{w_{3} x+c_{3}, 0\right\}
\end{aligned}
$$

What does a neural network approximate

$$
y=\alpha^{\top}(\operatorname{ReLU}(W x))+b
$$

It's a pieces wise linear functions
Consider $d=1$ case (and assume $b=0$):

$$
\left.\begin{array}{rl}
K=1: y= & a_{1} \max \left\{w_{1} x+c_{1}, 0\right\} \\
K=2: y= & a_{1} \max \left\{w_{1} x+c_{1}, 0\right\} \\
& +a_{2} \max \left\{w_{2} x+c_{2}, 0\right\}
\end{array}\right\} \begin{aligned}
K=3: y= & a_{1} \max \left\{w_{1} x+c_{1}, 0\right\} \\
& +a_{2} \max \left\{w_{2} x+c_{2}, 0\right\} \\
& +a_{3} \max \left\{w_{3} x+c_{3}, 0\right\}
\end{aligned}
$$

What does a neural network approximate

$y=\alpha^{\top}(\operatorname{ReLU}(W x))+b$
Claim: a wide enough one layer NN can approximate any smooth functions

What does a neural network approximate

$$
y=\alpha^{\top}(\operatorname{ReLU}(W x))+b
$$

Claim: a wide enough one layer NN can approximate any smooth functions

What does a neural network approximate

$$
y=\alpha^{\top}(\operatorname{ReLU}(W x))+b
$$

Claim: a wide enough one layer NN can approximate any smooth functions

What does a neural network approximate

$$
y=\alpha^{\top}(\operatorname{ReLU}(W x))+b
$$

Claim: a wide enough one layer NN can approximate any smooth functions

What does a neural network approximate

$$
y=\alpha^{\top}(\operatorname{ReLU}(W x))+b
$$

Claim: a wide enough one layer NN can approximate any smooth functions

What does a neural network approximate

$$
y=\alpha^{\top}(\operatorname{ReLU}(W x))+b
$$

Claim: a wide enough one layer NN can approximate any smooth functions

What does a neural network approximate

$$
y=\alpha^{\top}(\operatorname{ReLU}(W x))+b
$$

Claim: a wide enough one layer NN can approximate any smooth functions

A multi-layer fully connected neural network

A multi-layer fully connected neural network

A multi-layer fully connected neural network

A multi-layer fully connected neural network

Define it by a forward pass:

A multi-layer fully connected neural network

Define it by a forward pass:

$$
z^{[1]}=x
$$

A multi-layer fully connected neural network

Define it by a forward pass:

$$
z^{[1]}=x
$$

For $t=1$ to $\mathrm{T}-1$:

A multi-layer fully connected neural network

Define it by a forward pass:

$$
z^{[1]}=x
$$

For $t=1$ to T-1:

$$
z^{[t+1]}=\operatorname{ReLU}\left(W^{[t]} z^{t}\right)
$$

A multi-layer fully connected neural network

Define it by a forward pass:

$$
z^{[1]}=x
$$

For $t=1$ to $\mathrm{T}-1$:

$$
\begin{aligned}
& z^{[t+1]}=\operatorname{ReLU}\left(W^{[t]} z^{t}\right) \\
& y=\alpha^{\top} z^{[T]}+b
\end{aligned}
$$

The benefits of going deep

The benefits of going deep

Allows us to represent complicated functions without making NN too wide

Outline of Today

\author{

1. Analysis of Boosting
}
2. Multilayer feedforward Neural Network
3. Training a neural network

Training neural network via SGD

$$
h(x):=\alpha^{\top} \operatorname{ReLU}\left(W^{[2]} \operatorname{ReLU}\left(W^{[1]} x\right)\right)+b
$$

Training neural network via SGD

$$
h(x):=\alpha^{\top} \operatorname{ReLU}\left(W^{[2]} \operatorname{ReLU}\left(W^{[1]} x\right)\right)+b
$$

Let $\ell(h(x), y)$ be any differentiable loss function

Training neural network via SGD

$$
h(x):=\alpha^{\top} \operatorname{ReLU}\left(W^{[2]} \operatorname{ReLU}\left(W^{[1]} x\right)\right)+b
$$

Let $\ell(h(x), y)$ be any differentiable loss function

Compute gradients:

$$
\begin{array}{ll}
\frac{\partial \ell(h(x), y)}{\partial W^{[1]}} & \frac{\partial \ell(h(x), y)}{\partial W^{[2]}} \\
\frac{\partial \ell(h(x), y)}{\alpha} & \frac{\partial \ell(h(x), y)}{b}
\end{array}
$$

Training neural network via SGD

$$
h(x):=\alpha^{\top} \operatorname{ReLU}\left(W^{[2]} \operatorname{ReLU}\left(W^{[1]} x\right)\right)+b
$$

Let $\ell(h(x), y)$ be any differentiable loss function

Compute gradients:

$$
\begin{array}{ll}
\frac{\partial \ell(h(x), y)}{\partial W^{[1]}} & \frac{\partial \ell(h(x), y)}{\partial W^{[2]}} \\
\frac{\partial \ell(h(x), y)}{\alpha} & \frac{\partial \ell(h(x), y)}{b}
\end{array}
$$

(Next lecture: backpropagation for computing gradients)

Training neural network via SGD

Mini-batch Stochastic gradient descent

$$
\theta=\left[W^{[1]}, W^{[2]}, \alpha, b\right]
$$

For epoc $t=1$ to T :

Training neural network via SGD

Mini-batch Stochastic gradient descent

$$
\theta=\left[W^{[1]}, W^{[2]}, \alpha, b\right] \quad / / \text { go through dataset multiple times }
$$

For epoc $t=1$ to T :

Training neural network via SGD

Mini-batch Stochastic gradient descent

$$
\theta=\left[W^{[1]}, W^{[2]}, \alpha, b\right] \quad / / \text { go through dataset multiple times }
$$

For epoc $t=1$ to T :
Randomly shuffle the data

Training neural network via SGD

Mini-batch Stochastic gradient descent

$$
\theta=\left[W^{[1]}, W^{[2]}, \alpha, b\right] \quad / / \text { go through dataset multiple times }
$$

For epoc $t=1$ to T :
Randomly shuffle the data
// important (unbiased estimate of the true gradient)

Training neural network via SGD

Mini-batch Stochastic gradient descent

$$
\theta=\left[W^{[1]}, W^{[2]}, \alpha, b\right] \quad / / \text { go through dataset multiple times }
$$

For epoc $t=1$ to T :
// important (unbiased estimate of the true gradient)
Randomly shuffle the data

Split the data into n / B many batches \mathscr{D}_{i}, each w/ size B

Training neural network via SGD

Mini-batch Stochastic gradient descent

$$
\theta=\left[W^{[1]}, W^{[2]}, \alpha, b\right] \quad / / \text { go through dataset multiple times }
$$

For epoc $t=1$ to T :
// important (unbiased estimate of
Randomly shuffle the data the true gradient)

Split the data into n / B many batches \mathscr{D}_{i}, each w/ size B
For $\mathrm{j}=1$ to n / B

Training neural network via SGD

Mini-batch Stochastic gradient descent

$$
\theta=\left[W^{[1]}, W^{[2]}, \alpha, b\right]
$$

For epoc $t=1$ to T :
// important (unbiased estimate of
Randomly shuffle the data the true gradient)

Split the data into n / B many batches \mathscr{D}_{i}, each w/ size B
For $\mathrm{j}=1$ to n / B
Mini-batch gradient $g=\sum_{x, y \in \mathscr{D}_{i}} \nabla_{\theta} \ell\left(h_{\theta}(x), y\right) / B$

Training neural network via SGD

Mini-batch Stochastic gradient descent

$$
\theta=\left[W^{[1]}, W^{[2]}, \alpha, b\right]
$$

For epoc $t=1$ to T :
// important (unbiased estimate of
Randomly shuffle the data the true gradient)

Split the data into n / B many batches \mathscr{D}_{i}, each w/ size B
For $\mathrm{j}=1$ to n / B

$$
\begin{aligned}
& \text { Mini-batch gradient } g=\sum_{x, y \in \mathscr{D}_{i}} \nabla_{\theta} \ell\left(h_{\theta}(x), y\right) / B \\
& \theta=\theta-\eta g
\end{aligned}
$$

Training neural network via SGD

SGD helps avoiding local minima and saddle point

Training neural network via SGD

SGD tends to converge to a flat region

Training neural network via SGD

SGD tends to converge to a flat region

Training neural network via SGD

SGD tends to converge to a flat region

A flat local minima solution can help generalizes better to test data

Training neural network via SGD

SGD tends to converge to a flat region

A flat local minima solution can help generalizes better to test data

Connecting neural network with kernels

Consider a NN $f(x ; \theta)$
(the Neural Tangent Kernel theorem)

Connecting neural network with kernels

Consider a $\mathrm{NN} f(x ; \theta)$

Let's do a first order Taylor expansion around initialization θ_{0}

$$
f(x ; \theta) \approx f\left(x ; \theta_{0}\right)+\nabla_{\theta} f\left(x ; \theta_{0}\right)^{\top}\left(\theta-\theta_{0}\right)
$$

Connecting neural network with kernels

Consider a $\mathrm{NN} f(x ; \theta)$

Let's do a first order Taylor expansion around initialization θ_{0}

$$
f(x ; \theta) \approx f\left(x ; \theta_{0}\right)+\underbrace{\left.+\nabla_{\theta} f\left(x ; \theta_{0}\right)^{\top}(\theta)-\theta_{0}\right)}_{\text {feature } \phi(x)}
$$

Connecting neural network with kernels

Consider a $\mathrm{NN} f(x ; \theta)$

Let's do a first order Taylor expansion around initialization θ_{0}

$$
\begin{aligned}
& \left.f(x ; \theta) \approx f\left(x ; \theta_{0}\right)+\nabla_{\theta} f\left(x ; \theta_{0}\right)^{\top}(\theta)-\theta_{0}\right) \\
& \text { feature } \phi(x) \\
& \\
& \quad K\left(x, x^{\prime}\right)=\phi(x)^{\top} \phi\left(x^{\prime}\right)
\end{aligned}
$$

(the Neural Tangent Kernel theorem)

Connecting neural network with kernels

Consider a $\mathrm{NN} f(x ; \theta)$

Let's do a first order Taylor expansion around initialization θ_{0}

$$
\begin{aligned}
& f(x ; \theta) \approx f\left(x ; \theta_{0}\right)+\underbrace{+\nabla_{\theta} f\left(x ; \theta_{0}\right)^{\top}(\theta)}-\theta_{0}) \\
& \quad \text { feature } \phi(x) \\
& \\
& \qquad K\left(x, x^{\prime}\right)=\phi(x)^{\top} \phi\left(x^{\prime}\right)
\end{aligned}
$$

If NN training does not move θ to far away from θ_{0}, this is behaving like kernel regression
(the Neural Tangent Kernel theorem)

Summary for today

1. Neural network is universal function approximation
2. SGD is important for training neural networks

Next lecture: backpropagation

