Neural Network

Announcements

Boosting iteratively learns a new classifier, and add it to the ensemble

Initialize $H_1 = h_1 \in \mathscr{H}$ For t = 1 ...

Boosting iteratively learns a new classifier, and add it to the ensemble

Initialize $H_1 = h_1 \in \mathcal{H}$ For t = 1 ... Denote $\hat{\mathbf{y}} = [H_t(x_1), H_t(x_2), ..., H_t(x_n)]^\top \in \mathbb{R}^n$

Boosting iteratively learns a new classifier, and add it to the ensemble

Initialize $H_1 = h_1 \in \mathcal{H}$ For t = 1 ... Denote $\hat{\mathbf{y}} = \left[H_t(x_1), H_t(x_2), \dots, H_t(x_n) \right]^\top \in \mathbb{R}^n$

Boosting iteratively learns a new classifier, and add it to the ensemble

Initialize $H_1 = h_1 \in \mathcal{H}$ For t = 1 ...

Boosting iteratively learns a new classifier, and add it to the ensemble

Initialize $H_1 = h_1 \in \mathcal{H}$ For t = 1 ...

$$H_{t+1} = H_t + \alpha h_{t+1}$$

1. Create a new weighted dataset:

1. Create a new weighted dataset:

For each x_i , compute $p_i \propto \exp(-\hat{y}_i \cdot y_i)$

1. Create a new weighted dataset: For each x_i , compute $p_i \propto \exp(-\hat{y}_i \cdot y_i)$ Binary classification: $h_{t+1} = \arg \min_{h \in \mathcal{H}} \sum_{i} p_i \cdot \mathbf{1} \{ h(x_i) \neq y_i \}$

1. Create a new weighted dataset: For each x_i , compute $p_i \propto \exp(-\hat{y}_i \cdot y_i)$

2. Add new learner to the ensemble:

1. Create a new weighted dataset: For each x_i , compute $p_i \propto \exp(-\hat{y}_i \cdot y_i)$ Binary classification: $h_{t+1} = \arg \min_{h \in \mathcal{H}} \sum_{i} p_i \cdot \mathbf{1}\{h(x_i) \neq y_i\}$

2. Add new learner to the ensemble: $H_{t+1} = H_t + \frac{1}{2} \ln \frac{1 - \epsilon}{\epsilon} \cdot h_{t+1}$

Outline of Today

1. Analysis of Boosting

2. Multilayer feedforward Neural Network

3. Training a neural network

The definition of Weak learning

Each weaker learning optimizes its own data:

$$\widetilde{\mathscr{D}} = \{p_i, x_i, y_i\}, \text{ where } \sum_i p_i = 1, p_i \ge 0, \forall i$$
$$h_{t+1} = \arg\min_{h \in \mathscr{H}} \sum_{i=1}^n p_i \cdot \mathbf{1}(h(x_i) \neq y_i)$$

The definition of Weak learning

Each weaker learning optimizes its own data:

$$\widetilde{\mathscr{D}} = \left\{ p_i, x_i, y_i \right\}, \text{ where } \sum_i p_i = 1, p_i \ge 0, \forall i$$
$$h_{t+1} = \arg\min_{h \in \mathscr{H}} \sum_{i=1}^n p_i \cdot \mathbf{1}(h(x_i) \neq y_i)$$
er learner's loss $\epsilon := \sum_{i=1}^n p_i \mathbf{1}\{h_{t+1}(x_i) \neq y_i\} \le \frac{1}{2} - \gamma, \ \gamma > 0$

Assume that weake

The definition of Weak learning

Each weaker learning optimizes its own data:

$$\widetilde{\mathscr{D}} = \{p_i, x_i, y_i\}, \text{ where } \sum_i p_i = 1, p_i \ge 0, \forall i$$
$$h_{t+1} = \arg\min_{h \in \mathscr{H}} \sum_{i=1}^n p_i \cdot \mathbf{1}(h(x_i) \neq y_i)$$
er learner's loss $\epsilon := \sum_{i=1}^n p_i \mathbf{1}\{h_{t+1}(x_i) \neq y_i\} \le \frac{1}{2} - \gamma, \ \gamma > 0$

Assume that weake

Q: assume \mathcal{H} is symmetric, i.e., $h \in \mathcal{H}$ iff $-h \in \mathcal{H}$, why does the above always hold?

$(-\nabla L(\hat{\mathbf{y}}))^{\top} \begin{vmatrix} n_{t+1}(x_1) \\ \cdots \\ h_{k+1}(x_{k}) \end{vmatrix}$

$$(-\nabla L(\hat{\mathbf{y}}))^{\top} \begin{bmatrix} h_{t+1}(x_1) \\ \cdots \\ h_{h+1}(x_n) \end{bmatrix}$$
$$\geq (\sum_{j=1}^{n} |w_j|) 2\gamma > 0$$

$$(-\nabla L(\hat{\mathbf{y}}))^{\top} \begin{bmatrix} h_{t+1}(x_1) \\ \cdots \\ h_{h+1}(x_n) \end{bmatrix}$$
$$\geq (\sum_{j=1}^{n} |w_j|) 2\gamma > 0$$

Within 90 degree, so improve the objective!

Formal Convergence of AdaBoost

Then after T iterations, for the original exp loss, we have

 $\frac{1}{n} \sum_{i=1}^{n} \exp(-H_T(x_i) \cdot y_i) \le n(1 - 4\gamma^2)^{T/2}$

(Proof in lecture note, optional)

Formal Convergence of AdaBoost

Then after T iterations, for the original exp loss, we have

 $\frac{1}{n} \sum_{i=1}^{n} \exp(-H_T(x_i))$

Note zero-one loss is upper bounded by exponential loss

$$(x_i) \cdot y_i) \le n(1 - 4\gamma^2)^{T/2}$$

(Proof in lecture note, optional)

Formal Convergence of AdaBoost

Then after T iterations, for the original exp loss, we have

$$\frac{1}{n} \sum_{i=1}^{n} \exp(-H_T(x_i) \cdot y_i) \le n(1 - 4\gamma^2)^{T/2}$$

Note zero-one loss is upper bounded by exponential loss

$$\frac{1}{n} \sum_{i=1}^{n} \mathbf{1}\{\operatorname{sign}(H_T(x_i)) \neq y_i\} \le \frac{1}{n} \sum_{i=1}^{n} \exp(-H_T(x_i) \cdot y_i) \le n(1 - 4\gamma^2)^{T/2}$$

(Proof in lecture note, optional)

Row player plays hypothesis $h \in \mathcal{H}$ Column player plays example (x, y)

Row player plays hypothesis $h \in \mathcal{H}$ Column player plays example (x, y)

Row player gets loss $\mathbf{1}{h(x) \neq y}$

Row player plays hypothesis $h \in \mathcal{H}$ Column player plays example (x, y)

Row player gets loss $\mathbf{1}{h(x) \neq y}$ Column player gets loss $-\mathbf{1}{h(x) \neq y}$

Boosting can be understood as running some specific algorithm to find the Nash equilibrium of the game

Thinking about Boosting via two player zero sum game

Row player plays hypothesis $h \in \mathcal{H}$ Column player plays example (x, y)

Row player gets loss $\mathbf{1}{h(x) \neq y}$ Column player gets loss $-\mathbf{1}{h(x) \neq y}$

Outline of Today

1. Analysis of Boosting

2. Multilayer feedforward Neural Network

3. Training a neural network

Negative part does not make too much sense

Negative part does not make too much sense

We can fix this with a simple nonlinear function

 $y = \max\{w_1 x + w_0, 0\}$

Negative part does not make too much sense

We can fix this with a simple nonlinear function

 $y = \max\{w_1 x + w_0, 0\}$

Negative part does not make too much sense

We can fix this with a simple nonlinear function

 $y = \max\{w_1 x + w_0, 0\}$

rectified linear unit (ReLU)

A single neuron network

A single neuron network

$y = a \max\{w_1 x + w_0, 0\} + b$

$y = a \text{ReLU}(w^{\mathsf{T}}x) + b$

Vectorized form:

Define
$$W = \begin{bmatrix} (w_1)^\top \\ \cdots \\ (w_K)^\top \end{bmatrix} \in \mathbb{R}^{K \times d}$$

Vectorized form:

Define
$$W = \begin{bmatrix} (w_1)^{\mathsf{T}} \\ \cdots \\ (w_K)^{\mathsf{T}} \end{bmatrix} \in \mathbb{R}^{K \times d}$$

 $\alpha = [a_1, \dots, a_K]^\top$

Vectorized form:

Define
$$W = \begin{bmatrix} (w_1)^\top \\ \cdots \\ (w_K)^\top \end{bmatrix} \in \mathbb{R}^{K \times d}$$

$$\boldsymbol{\alpha} = [a_1, \dots, a_K]^\top$$

Vectorized form:

Define
$$W = \begin{bmatrix} (w_1)^{\mathsf{T}} \\ \cdots \\ (w_K)^{\mathsf{T}} \end{bmatrix} \in \mathbb{R}^{K \times d}$$

$$\alpha = [a_1, \dots, a_K]^{\mathsf{T}}$$
$$\mathbf{w} = \alpha^{\mathsf{T}} (\mathsf{ReLU}(Wx)) + b$$

Learnable feature $\phi(x)$

- $y = \alpha^{\top} (\operatorname{ReLU}(Wx)) + b$
- It's a pieces wise linear functions

- $y = \alpha^{\top} (\operatorname{ReLU}(Wx)) + b$
- It's a pieces wise linear functions
- Consider d = 1 case (and assume b = 0):

- $y = \alpha^{\top} (\operatorname{ReLU}(Wx)) + b$
- It's a pieces wise linear functions
- Consider d = 1 case (and assume b = 0):
- $K = 1 : y = a_1 \max\{w_1 x + c_1, 0\}$

- $y = \alpha^{\top} (\operatorname{ReLU}(Wx)) + b$
- It's a pieces wise linear functions
- Consider d = 1 case (and assume b = 0):
- $K = 1 : y = a_1 \max\{w_1 x + c_1, 0\}$

- $y = \alpha^{\top} (\operatorname{ReLU}(Wx)) + b$
- It's a pieces wise linear functions
- Consider d = 1 case (and assume b = 0):
- $K = 1 : y = a_1 \max\{w_1 x + c_1, 0\}$ $K = 2 : y = a_1 \max\{w_1 x + c_1, 0\}$ $+a_2 \max\{w_2 x + c_2, 0\}$

- $y = \alpha^{\top} (\operatorname{ReLU}(Wx)) + b$
- It's a pieces wise linear functions
- Consider d = 1 case (and assume b = 0):
- $K = 1 : y = a_1 \max\{w_1 x + c_1, 0\}$ $K = 2 : y = a_1 \max\{w_1 x + c_1, 0\}$ $+a_2 \max\{w_2 x + c_2, 0\}$

- $y = \alpha^{\top} (\operatorname{ReLU}(Wx)) + b$
- It's a pieces wise linear functions
- Consider d = 1 case (and assume b = 0):
- $K = 1 : y = a_1 \max\{w_1 x + c_1, 0\}$ $K = 2 : y = a_1 \max\{w_1 x + c_1, 0\}$ $+a_2 \max\{w_2 x + c_2, 0\}$

- It's a pieces wise linear functions
- Consider d = 1 case (and assume b = 0):
- $K = 1 : y = a_1 \max\{w_1 x + c_1, 0\}$ $K = 2 : y = a_1 \max\{w_1 x + c_1, 0\}$ $+a_2 \max\{w_2 x + c_2, 0\}$
- $K = 3 : y = a_1 \max\{w_1 x + c_1, 0\}$ $+a_2 \max\{w_2 x + c_2, 0\}$ $+a_3 \max\{w_3 x + c_3, 0\}$

- It's a pieces wise linear functions
- Consider d = 1 case (and assume b = 0):
- $K = 1 : y = a_1 \max\{w_1 x + c_1, 0\}$ $K = 2 : y = a_1 \max\{w_1 x + c_1, 0\}$ $+a_2 \max\{w_2 x + c_2, 0\}$
- $K = 3 : y = a_1 \max\{w_1 x + c_1, 0\}$ $+a_2 \max\{w_2 x + c_2, 0\}$ $+a_3 \max\{w_3 x + c_3, 0\}$

- It's a pieces wise linear functions
- Consider d = 1 case (and assume b = 0):
- $K = 1 : y = a_1 \max\{w_1 x + c_1, 0\}$ $K = 2 : y = a_1 \max\{w_1 x + c_1, 0\}$ $+a_2 \max\{w_2 x + c_2, 0\}$
- $K = 3 : y = a_1 \max\{w_1 x + c_1, 0\}$ $+a_2 \max\{w_2 x + c_2, 0\}$ $+a_3 \max\{w_3 x + c_3, 0\}$

Claim: a wide enough one layer NN can approximate any smooth functions

 $y = \alpha^{\top} (\operatorname{ReLU}(Wx)) + b$

Claim: a wide enough one layer NN can approximate any smooth functions

Claim: a wide enough one layer NN can approximate any smooth functions

Claim: a wide enough one layer NN can approximate any smooth functions

Claim: a wide enough one layer NN can approximate any smooth functions

Claim: a wide enough one layer NN can approximate any smooth functions

Claim: a wide enough one layer NN can approximate any smooth functions

 $y = \alpha^{\mathsf{T}}\mathsf{ReLU}\left(W^{[2]}\mathsf{ReLU}\left(W^{[1]}x\right)\right) + b$

Define it by a forward pass:

Define it by a forward pass:

 $z^{[1]} = x$

Define it by a forward pass:

 $z^{[1]} = x$ For t = 1 to T-1:

Define it by a forward pass:

 $z^{[1]} = x$ For t = 1 to T-1: $z^{[t+1]} = \text{ReLU} \left(W^{[t]} z^t \right)$

Define it by a forward pass:

 $z^{[1]} = x$ For t = 1 to T-1: $z^{[t+1]} = \text{ReLU} \left(W^{[t]} z^t \right)$ $y = \alpha^{\mathsf{T}} z^{[T]} + b$

The benefits of going deep

The benefits of going deep

Allows us to represent complicated functions without making NN too wide

Outline of Today

1. Analysis of Boosting

2. Multilayer feedforward Neural Network

3. Training a neural network

Let $\ell(h(x), y)$ be any differentiable loss function

(Next lecture: backpropagation for computing gradients)

Mini-batch Stochastic gradient descent

$\theta = [W^{[1]}, W^{[2]}, \alpha, b]$ For epoc t = 1 to *T*:

Mini-batch Stochastic gradient descent

$\theta = [W^{[1]}, W^{[2]}, \alpha, b]$ // go three For epoce t = 1 to T:

// go through dataset multiple times

Mini-batch Stochastic gradient descent

 $\theta = [W^{[1]}, W^{[2]}, \alpha, b]$ // go thr For epoc t = 1 to T:

Randomly shuffle the data

// go through dataset multiple times

Mini-batch Stochastic gradient descent

 $\theta = [W^{[1]}, W^{[2]}, \alpha, b]$ // go three For epoce t = 1 to T:

Randomly shuffle the data

// go through dataset multiple times

// important (unbiased estimate of
the true gradient)

 $\theta = [W^{[1]}, W^{[2]}, \alpha, b]$ For epoc t = 1 to T:

> Randomly shuffle the data Split the data into n/B many batches \mathcal{D}_i , each w/ size B

- Mini-batch Stochastic gradient descent
 - // go through dataset multiple times
 - // important (unbiased estimate of the true gradient)

 $\theta = [W^{[1]}, W^{[2]}, \alpha, b]$ For epoc t = 1 to T:

> Randomly shuffle the data Split the data into n/B many batches \mathcal{D}_i , each w/ size B For j = 1 to n/B

- Mini-batch Stochastic gradient descent
 - // go through dataset multiple times
 - // important (unbiased estimate of the true gradient)

 $\theta = [W^{[1]}, W^{[2]}, \alpha, b]$ For epoc t = 1 to T:

> Randomly shuffle the data Split the data into n/B many batches \mathcal{D}_i , each w/ size B For j = 1 to n/B

- Mini-batch Stochastic gradient descent
 - // go through dataset multiple times
 - // important (unbiased estimate of the true gradient)

 $\theta = [W^{[1]}, W^{[2]}, \alpha, b]$ For epoc t = 1 to T: Randomly shuffle the data Split the data into n/B many batches \mathcal{D}_i , each w/ size B For j = 1 to n/BMini-batch gradient $g = \sum \nabla_{\theta} \mathcal{E}(h_{\theta}(x), y) / B$ $\theta = \theta - \eta g$

- Mini-batch Stochastic gradient descent
 - // go through dataset multiple times
 - // important (unbiased estimate of the true gradient)

SGD helps avoiding local minima and saddle point

A local minima

SGD tends to converge to a flat region

Training loss

SGD tends to converge to a flat region

Training loss

Training loss

A flat local minima solution can help generalizes better to test data

SGD tends to converge to a flat region

SGD tends to converge to a flat region

Training loss

A flat local minima solution can help generalizes better to test data

True/test loss

Consider a NN $f(x; \theta)$

(the Neural Tangent Kernel theorem)

Consider a NN $f(x; \theta)$

Let's do a first order Taylor expansion around initialization $heta_0$

 $f(x;\theta) \approx f(x;\theta_0) + \nabla_{\theta} f(x;\theta_0)^{\top} (\theta - \theta_0)$

(the Neural Tangent Kernel theorem)

Consider a NN $f(x; \theta)$

Let's do a first order Taylor expansion around initialization θ_0

(the Neural Tangent Kernel theorem)

 $f(x;\theta) \approx f(x;\theta_0) + \nabla_{\theta} f(x;\theta_0)^{\mathsf{T}}(\theta - \theta_0)$

feature $\phi(x)$

Consider a NN $f(x; \theta)$

Let's do a first order Taylor expansion around initialization θ_0

(the Neural Tangent Kernel theorem)

 $f(x;\theta) \approx f(x;\theta_0) + \nabla_{\theta} f(x;\theta_0)^{\mathsf{T}}(\theta - \theta_0)$

feature $\phi(x)$ $K(x, x') = \phi(x)^{\top} \phi(x')$

Consider a NN $f(x; \theta)$

Let's do a first order Taylor expansion around initialization θ_0

 $f(x;\theta) \approx f(x;\theta_0)$

If NN training does not move θ to far away from θ_0 , this is behaving like kernel regression

(the Neural Tangent Kernel theorem)

$$+ \nabla_{\theta} f(x; \theta_0)^{\mathsf{T}}(\theta - \theta_0)$$

feature $\phi(x)$ $K(x, x') = \phi(x)^{\top} \phi(x')$

Summary for today

1. Neural network is universal function approximation

2. SGD is important for training neural networks

Next lecture: backpropagation