K-nearest Neighbor

Announcement:

1. HW1 will be out today / early tomorrow and Due Sep 13

Recap

Outline for Today

1. The K-NN Algorithm

2. Why/When does K-NN work

3. Curse of dimensionality (i.e., when it can fail)

K-NN Algorithm:

K-NN Algorithm:

Store all training data

K-NN Algorithm:

Store all training data For any test point *x* :

K-NN Algorithm:

Store all training data For any test point x :

Find its top K nearest neighbors (under metric d)

K-NN Algorithm:

Store all training data For any test point x :

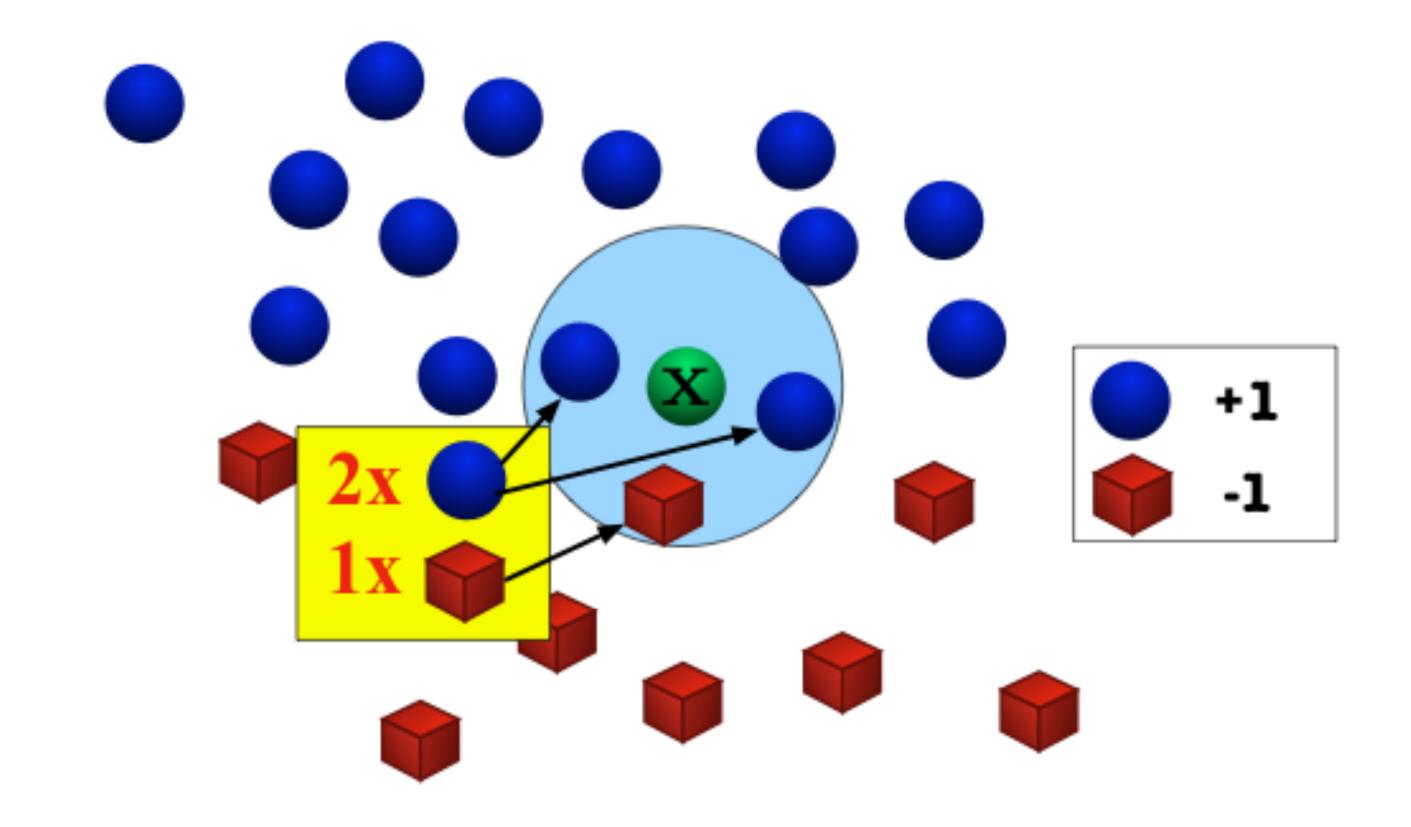
> Find its top K nearest neighbors (under metric d) Return the most common label among these K neighbors

K-NN Algorithm:

Store all training data For any test point x :

- Find its top K nearest neighbors (under metric d)
- Return the most common label among these K neighbors
- (If for regression, return the average value of the K neighbors)

Example: 3-NN for binary classification using Euclidean distance



The choice of metric

1. We believe our metric d captures similarities between examples:

Examples that are close to each other share similar labels

The choice of metric

Another example: Manhattan distance (ℓ_1)

$$d(x, x') = \sum_{j=1}^{d} |x[j] - x'[j]|$$

1. We believe our metric d captures similarities between examples:

Examples that are close to each other share similar labels

1. What if we set *K* very large?

- 1. What if we set *K* very large?
- Top K-neighbors will include examples that are very far away...

- 1. What if we set *K* very large?
- Top K-neighbors will include examples that are very far away...

2. What if we set K very small (K=1)?

- 1. What if we set *K* very large?
- Top K-neighbors will include examples that are very far away...

- 2. What if we set K very small (K=1)?
- label has noise (easily overfit to the noise)

- 2. What if we set K very small (K=1)?
- label has noise (easily overfit to the noise)
- (What about the training error when K = 1?)

- 1. What if we set *K* very large?
- Top K-neighbors will include examples that are very far away...

Outline for Today

1. The K-NN Algorithm

2. Why/When does K-NN work

3. Curse of dimensionality (i.e., why it can fail in high-dimension data)

Assume our data is collected in an i.i.d fashion, i.e., $(x, y) \sim P$ (say $y \in \{-1, 1\}$)

Assume our data is collected in an i.i.d fashion, i.e., $(x, y) \sim P$ (say $y \in \{-1, 1\}$)

Assume we know P(y | x) for now Q: what label you would predict?

Assume our data is collected in an i.i.d fashion, i.e., $(x, y) \sim P$ (say $y \in \{-1, 1\}$)

- Assume we know P(y | x) for now
- Q: what label you would predict?
- A: we will simply predict the most-likely label,
 - $h_{opt}(x) = \arg \max_{y \in \{-1,1\}} P(y \mid x)$

Assume our data is collected in an i.i.d fashion, i.e., $(x, y) \sim P$ (say $y \in \{-1, 1\}$)

- Assume we know P(y | x) for now
- Q: what label you would predict?
- A: we will simply predict the most-likely label,
 - $h_{opt}(x) = \arg \max_{y \in \{-1,1\}} P(y \mid x)$
 - **Bayes optimal predictor**

 $\begin{cases} P(1 | x) = 0.8 \\ P(-1 | x) = 0.2 \end{cases}$

Assume our data is collected in an i.i.d fashion, i.e., $(x, y) \sim P$ (say $y \in \{-1, 1\}$)

Bayes optimal predictor: $h_{opt}(x) = \arg \max_{v \in \{-1,1\}} P(y | x)$

Example:

$$\begin{cases} P(1 | x) = 0.8 \\ P(-1 | x) = 0.2 \end{cases}$$

 $y_b := h_{opt}(x) = 1$

Assume our data is collected in an i.i.d fashion, i.e., $(x, y) \sim P$ (say $y \in \{-1, 1\}$)

Bayes optimal predictor: $h_{opt}(x) = \arg \max_{y \in \{-1,1\}} P(y | x)$

Example:

$$\begin{cases} P(1 | x) = 0.8 \\ P(-1 | x) = 0.2 \end{cases}$$

 $y_b := h_{opt}(x) = 1$

Assume our data is collected in an i.i.d fashion, i.e., $(x, y) \sim P$ (say $y \in \{-1, 1\}$)

Bayes optimal predictor: $h_{opt}(x) = \arg \max_{y \in \{-1,1\}} P(y | x)$

Example:

Q: What's the probability of h_{opt} making a mistake on x?

$$\begin{cases} P(1 | x) = 0.8 \\ P(-1 | x) = 0.2 \end{cases}$$

 $y_b := h_{opt}(x) = 1$

Assume our data is collected in an i.i.d fashion, i.e., $(x, y) \sim P$ (say $y \in \{-1, 1\}$)

Bayes optimal predictor: $h_{opt}(x) = \arg \max_{v \in \{-1,1\}} P(y | x)$

Example:

Q: What's the probability of h_{opt} making a mistake on x? $\epsilon_{opt} = 1 - P(y_b | x) = 0.2$

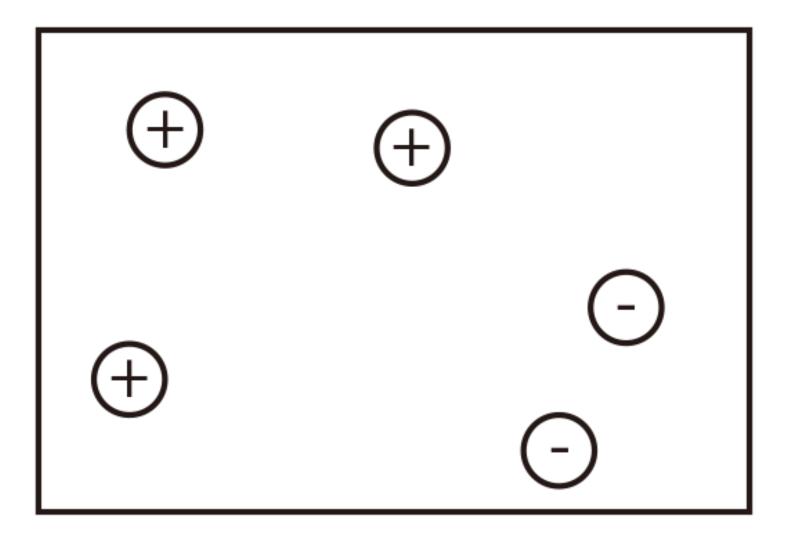
Assume $x \in [-1,1]^2$, P(x) has support everywhere $P(x) > 0, \forall x \in [-1,1]^2$

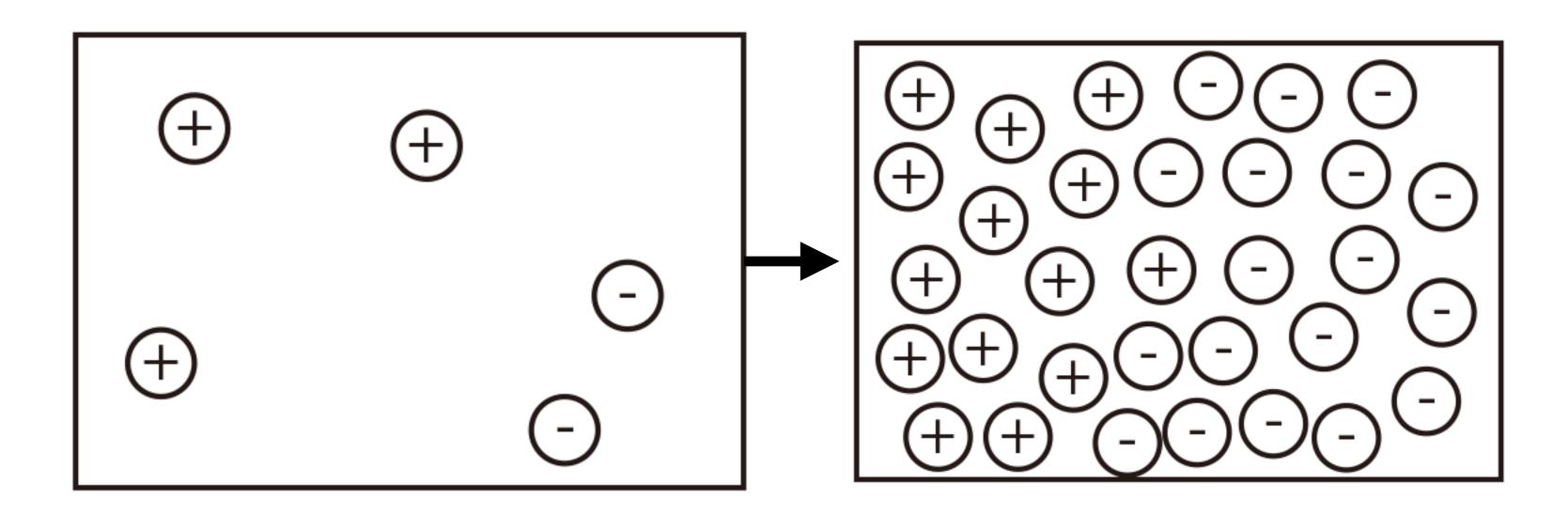
Assume $x \in [-1,1]^2$, P(x) has support everywhere $P(x) > 0, \forall x \in [-1,1]^2$

What does it look when $n \to \infty$?

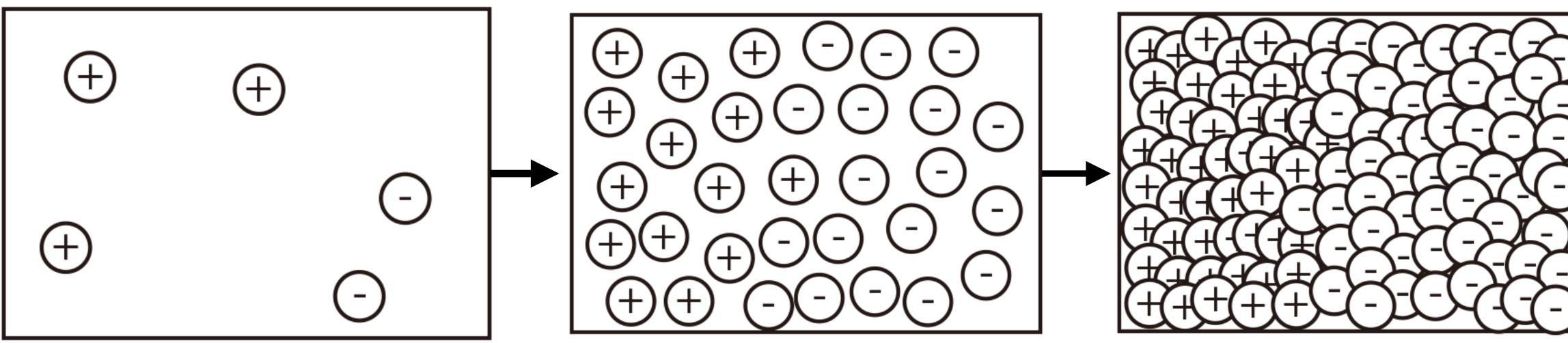
Assume $x \in [-1,1]^2$, P(x) has support everywhere $P(x) > 0, \forall x \in [-1,1]^2$

What does it look when $n \to \infty$?

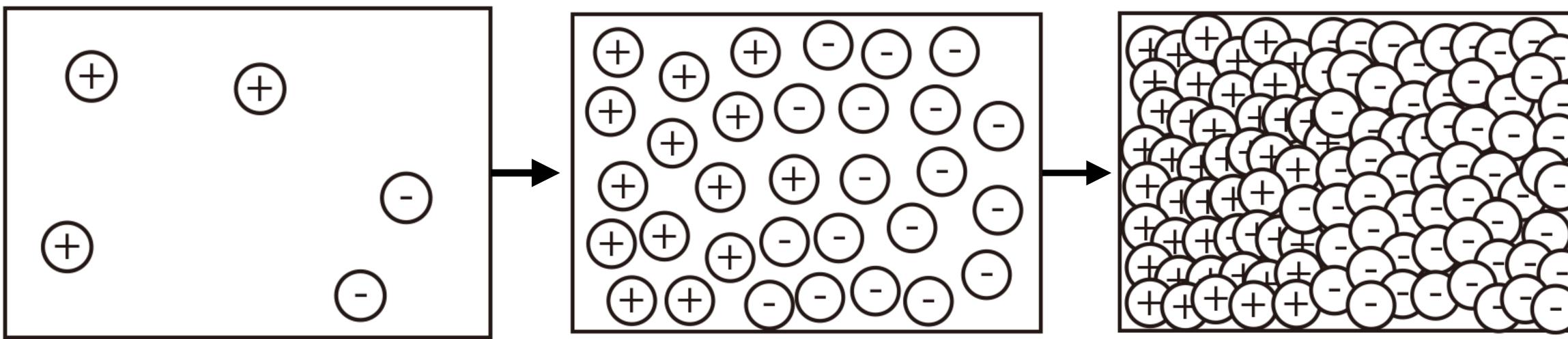




- Assume $x \in [-1,1]^2$, P(x) has support everywhere $P(x) > 0, \forall x \in [-1,1]^2$
 - What does it look when $n \to \infty$?



- Assume $x \in [-1,1]^2$, P(x) has support everywhere $P(x) > 0, \forall x \in [-1,1]^2$
 - What does it look when $n \to \infty$?



Given test *x*, as $n \to \infty$, its nearest neighbor x_{NN} is super close, i.e., $d(x, x_{NN}) \to 0!$

- Assume $x \in [-1,1]^2$, P(x) has support everywhere $P(x) > 0, \forall x \in [-1,1]^2$
 - What does it look when $n \to \infty$?

Theorem: as $n \to \infty$, 1-NN prediction error is **no more than twice** of the error of the Bayes optimal classifier

Proof:

Theorem: as $n \to \infty$, 1-NN prediction error is **no more than twice** of the error of the Bayes optimal classifier

Proof:

1. Fix a test example x, denote its NN as x_{NN} . When $n \to \infty$, we have $x_{NN} \to x$

Theorem: as $n \to \infty$, 1-NN prediction error is **no more than** twice of the error of the Bayes optimal classifier

Proof:

- 2. WLOG assume for x, the Bayes optimal predicts $y_b = h_{opt}(x) = 1$

1. Fix a test example x, denote its NN as x_{NN} . When $n \to \infty$, we have $x_{NN} \to x$

Theorem: as $n \to \infty$, 1-NN prediction error is **no more than** twice of the error of the Bayes optimal classifier

Proof:

- 3. Calculate the 1-NN's prediction error:

1. Fix a test example x, denote its NN as x_{NN} . When $n \to \infty$, we have $x_{NN} \to x$

2. WLOG assume for x, the Bayes optimal predicts $y_b = h_{opt}(x) = 1$

Theorem: as $n \to \infty$, 1-NN prediction error is **no more than** twice of the error of the Bayes optimal classifier

Proof:

- 1. Fix a test example x, denote its NN as x_{NN} . When $n \to \infty$, we have $x_{NN} \to x$
- 2. WLOG assume for x, the Bayes optimal predicts $y_b = h_{opt}(x) = 1$
- 3. Calculate the 1-NN's prediction error:

Case 1 when $y_{NN} = 1$ (it happens w/ prob $P(1 | x_{NN}) = P(1 | x)$):

Theorem: as $n \to \infty$, 1-NN prediction error is **no more than** twice of the error of the Bayes optimal classifier

Proof:

- 1. Fix a test example x, denote its NN as x_{NN} . When $n \to \infty$, we have $x_{NN} \to x$
- 2. WLOG assume for x, the Bayes optimal predicts $y_b = h_{opt}(x) = 1$
- 3. Calculate the 1-NN's prediction error:

Case 1 when $y_{NN} = 1$ (it happens w/ prob $P(1 | x_{NN}) = P(1 | x)$):

The probability of making a mistake: $\epsilon = P(y \neq 1 | x) = P(y = -1 | x)$

Theorem: as $n \to \infty$, 1-NN prediction error is **no more than** twice of the error of the Bayes optimal classifier

Proof:

- 1. Fix a test example x, denote its NN as x_{NN} . When $n \to \infty$, we have $x_{NN} \to x$
- 2. WLOG assume for x, the Bayes optimal predicts $y_b = h_{opt}(x) = 1$
- 3. Calculate the 1-NN's prediction error:
 - **Case 1** when $y_{NN} = 1$ (it happens w/ prob $P(1 | x_{NN}) = P(1 | x)$):
 - The probability of making a mistake: $\epsilon = P(y \neq 1 | x) = P(y = -1 | x)$

$$= 1 - P(y_b | x)$$

Case 1 when $y_{NN} = 1$ (it happens w/ The probability of making a mista

/ prob
$$P(1 | x_{NN}) = P(1 | x)$$
:
ake: $\epsilon = 1 - P(y_b | x)$

Case 1 when $y_{NN} = 1$ (it happens w/ The probability of making a mista

Case 2 when $y_{NN} = -1$ (it happens w/ prob $P(-1 | x_{NN}) = P(-1 | x)$):

/ prob
$$P(1 | x_{NN}) = P(1 | x)$$
:
ake: $\epsilon = 1 - P(y_b | x)$

Case 1 when $y_{NN} = 1$ (it happens w/ The probability of making a mista

Case 2 when $y_{NN} = -1$ (it happens)

The probability of making a mistake: $\epsilon = P(y \neq -1 | x) = P(y = 1 | x)$

/ prob
$$P(1 | x_{NN}) = P(1 | x)$$
:
ake: $\epsilon = 1 - P(y_b | x)$

w/ prob
$$P(-1 | x_{NN}) = P(-1 | x)$$
:

Case 1 when $y_{NN} = 1$ (it happens w/ The probability of making a mista

Case 2 when $y_{NN} = -1$ (it happens)

Theorem: as $n \to \infty$, 1-NN prediction error is **no more than** twice of the error of the Bayes optimal classifier

/ prob
$$P(1 | x_{NN}) = P(1 | x)$$
:
ake: $\epsilon = 1 - P(y_b | x)$

w/ prob
$$P(-1 | x_{NN}) = P(-1 | x)$$
:

The probability of making a mistake: $\epsilon = P(y \neq -1 | x) = P(y = 1 | x) = P(y_h | x)$

Case 1 when $y_{NN} = 1$ (it happens w/ The probability of making a mista

Case 2 when $y_{NN} = -1$ (it happens)

The probability of making a mistake: $\epsilon =$

/ prob
$$P(1 | x_{NN}) = P(1 | x)$$
:
ake: $\epsilon = 1 - P(y_b | x)$

w/ prob
$$P(-1 | x_{NN}) = P(-1 | x)$$
:
 $P(y \neq -1 | x) = P(y = 1 | x) = P(y_b | x)$

Case 1 when $y_{NN} = 1$ (it happens w/ The probability of making a mista

Case 2 when $y_{NN} = -1$ (it happens)

The probability of making a mistake: $\epsilon =$

Our prediction error at *x*:

/ prob
$$P(1 | x_{NN}) = P(1 | x)$$
:
ake: $\epsilon = 1 - P(y_b | x)$

w/ prob
$$P(-1 | x_{NN}) = P(-1 | x)$$
:
 $P(y \neq -1 | x) = P(y = 1 | x) = P(y_b | x)$

Case 1 when $y_{NN} = 1$ (it happens w/ The probability of making a mista

Case 2 when $y_{NN} = -1$ (it happens)

The probability of making a mistake: $\epsilon =$

Our prediction error at *x*:

 $P(1 | x)(1 - P(y_h | x)) + P(-1 | x)P(y_h | x)$

/ prob
$$P(1 | x_{NN}) = P(1 | x)$$
:
ake: $\epsilon = 1 - P(y_b | x)$

w/ prob
$$P(-1 | x_{NN}) = P(-1 | x)$$
:
 $P(y \neq -1 | x) = P(y = 1 | x) = P(y_b | x)$

Case 1 when $y_{NN} = 1$ (it happens w/ The probability of making a mista

Case 2 when $y_{NN} = -1$ (it happens)

The probability of making a mistake: $\epsilon =$

Our prediction error at *x*:

 $P(1 | x)(1 - P(y_h | x)) + P(-1 | x)P(y_h | x)$

/ prob
$$P(1 | x_{NN}) = P(1 | x)$$
:
ake: $\epsilon = 1 - P(y_b | x)$

w/ prob
$$P(-1 | x_{NN}) = P(-1 | x)$$
:
 $P(y \neq -1 | x) = P(y = 1 | x) = P(y_b | x)$

$$\leq (1 - P(y_b | x)) + (1 - P(y_b | x)) = 2\epsilon_{opt}$$

What happens if *K* is large? (e.g., $K = 1e6, n \to \infty$)

What happens if *K* is large? (e.g., $K = 1e6, n \rightarrow \infty$)

A: Given any x, the K-NN should return the y_b — the solution of the Bayes optimal

Outline for Today

1. The K-NN Algorithm

2. Why/When does K-NN work

3. Curse of dimensionality (i.e., why it can fail in high-dimension data)

Finite sample error rate of 1-NN in high-dimension setting

(Informal result and no proof)

Finite sample error rate of 1-NN in <u>high-dimension</u> setting

(Informal result and no proof)

Fix $n \in \mathbb{N}^+$, assume $x \in [0,1]^d$, assume $P(y \mid x)$ is Lipschitz continuous with respect to x, i.e., $|P(y|x) - P(y|x')| \le d(x, x')$

Finite sample error rate of 1-NN in <u>high-dimension</u> setting

Then, we have:

(Informal result and no proof)

Fix $n \in \mathbb{N}^+$, assume $x \in [0,1]^d$, assume $P(y \mid x)$ is Lipschitz continuous with respect to x, i.e., $|P(y|x) - P(y|x')| \le d(x, x')$

<u>Finite sample</u> error rate of 1-NN in <u>high-dimension</u> setting

(Informal result and no proof)

Fix $n \in \mathbb{N}^+$, assume $x \in [0, \infty)$ continuous with respect to *x*,

 $\mathbb{E}_{x, y \sim P} \left[\mathbf{1}(y \neq 1 \mathsf{NN}(x)) \right] \leq 2 \mathbb{E}_{x, y}$

$$[0,1]^d$$
, assume $P(y|x)$ is Lipschitz
i.e., $|P(y|x) - P(y|x')| \le d(x,x')$

Then, we have:

$$\sum_{n \sim P} \left[\mathbf{1}(y \neq h_{opt}(x)) \right] + O\left(\left(\frac{1}{n} \right)^{1/d} \right)$$

Finite sample error rate of 1-NN in <u>high-dimension</u> setting

(Informal result and no proof)

Fix $n \in \mathbb{N}^+$, assume $x \in [0, \infty)$ continuous with respect to *x*,

 $\mathbb{E}_{x, v \sim P} \left[\mathbf{1}(y \neq 1 \mathsf{NN}(x)) \right] \leq 2 \mathbb{E}_{x, v}$

$$[0,1]^d$$
, assume $P(y|x)$ is Lipschitz
i.e., $|P(y|x) - P(y|x')| \le d(x,x')$

Then, we have:

$$\sum_{v \sim P} \left[\mathbf{1}(y \neq h_{opt}(x)) \right] + O\left(\left(\frac{1}{n} \right)^{1/d} \right)$$

The bound is meaningless when $d \to \infty$, while *n* is some finite number!

Finite sample error rate of 1-NN in <u>high-dimension</u> setting

(Informal result and no proof)

Fix $n \in \mathbb{N}^+$, assume $x \in [0, \infty)$ continuous with respect to *x*,

 $\mathbb{E}_{x,v \sim P} \left[\mathbf{1}(y \neq 1 \mathsf{NN}(x)) \right] \leq 2 \mathbb{E}_{x,v}$

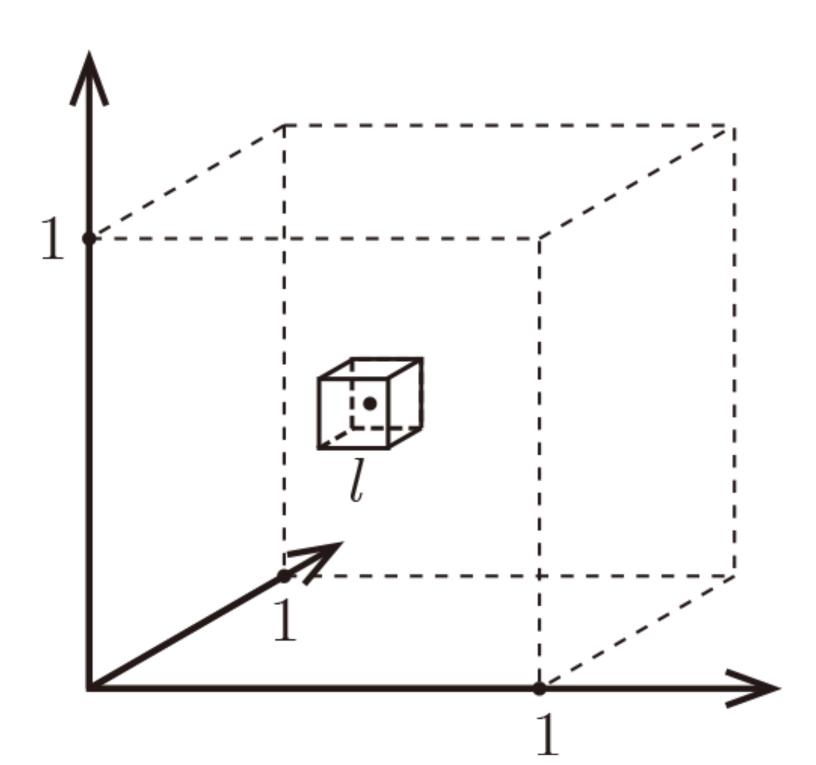
Curse of dimensionality!

$$[0,1]^d$$
, assume $P(y|x)$ is Lipschitz
i.e., $|P(y|x) - P(y|x')| \le d(x,x')$

Then, we have:

$$\sum_{v \sim P} \left[\mathbf{1}(y \neq h_{opt}(x)) \right] + O\left(\left(\frac{1}{n} \right)^{1/d} \right)$$

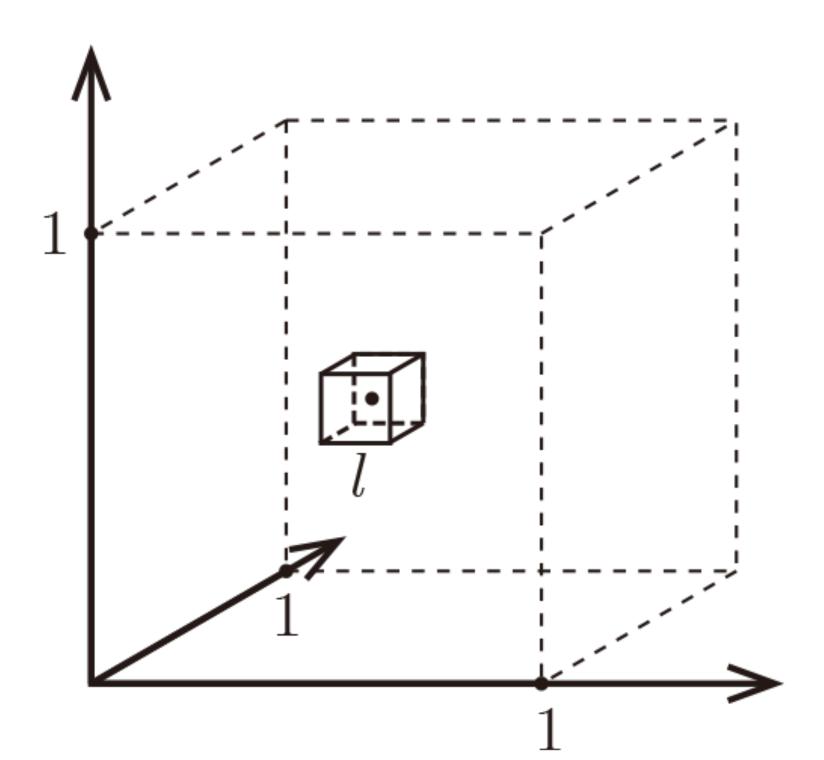
The bound is meaningless when $d \to \infty$, while *n* is some finite number!



Key problem: in high dimensional space, points that are draw from a distribution tends to be far away from each other!

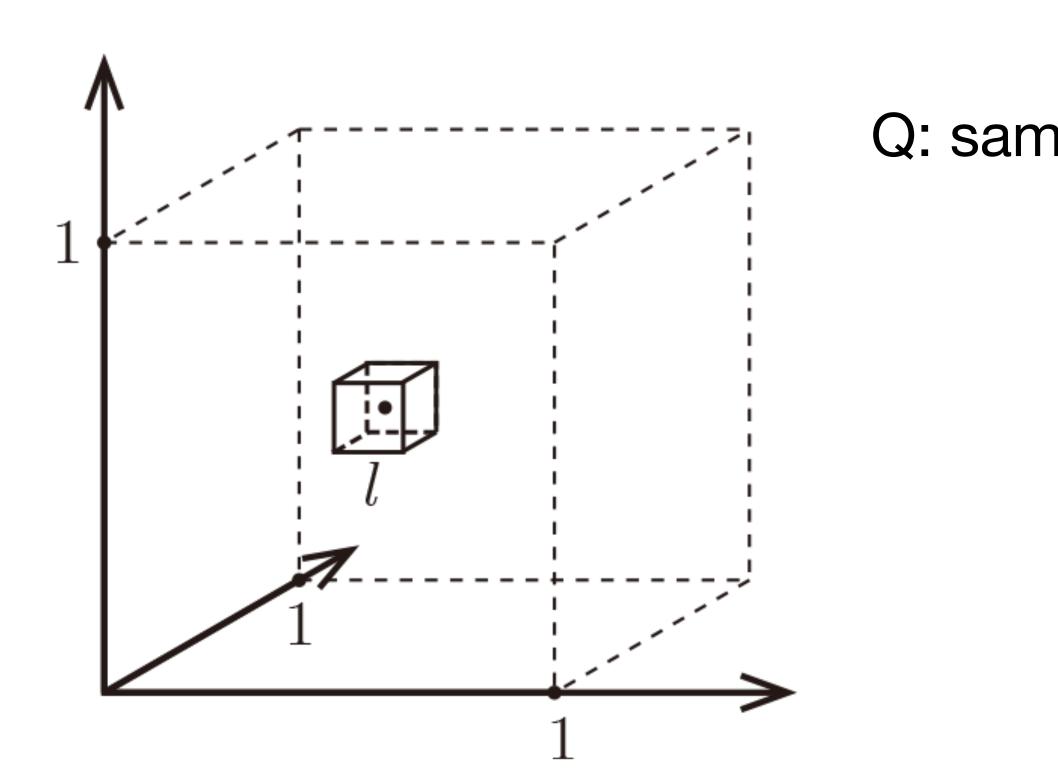
Key problem: in high dimensional space, points that are draw from a distribution tends to be far away from each other!

Example: let us consider uniform distribution over a cube $[0,1]^d$

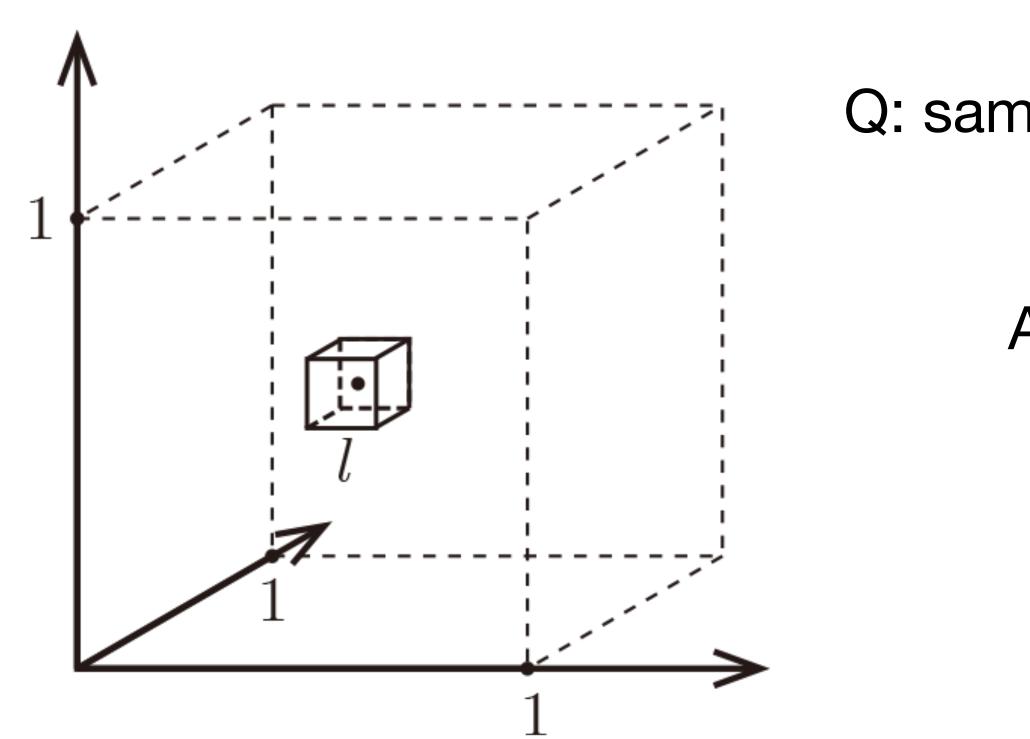


Key problem: in high dimensional space, points that are draw from a distribution tends to be far away from each other!

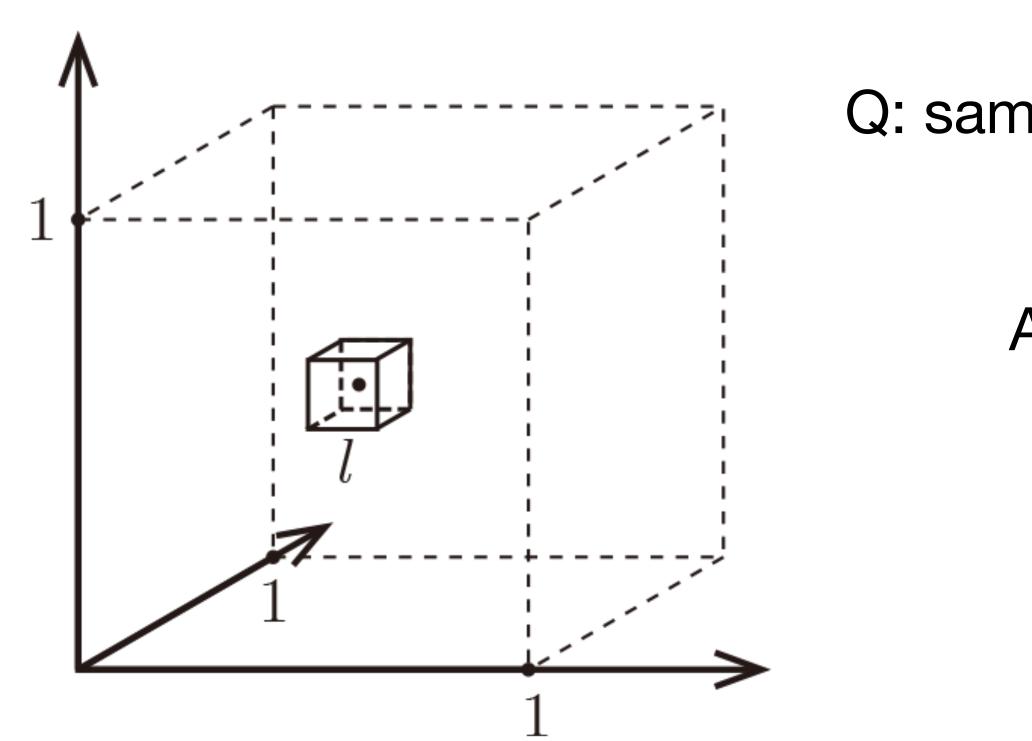
Example: let us consider uniform distribution over a cube $[0,1]^d$



Q: sample *x* uniformly, what is the probability that *x* is inside the small cube?

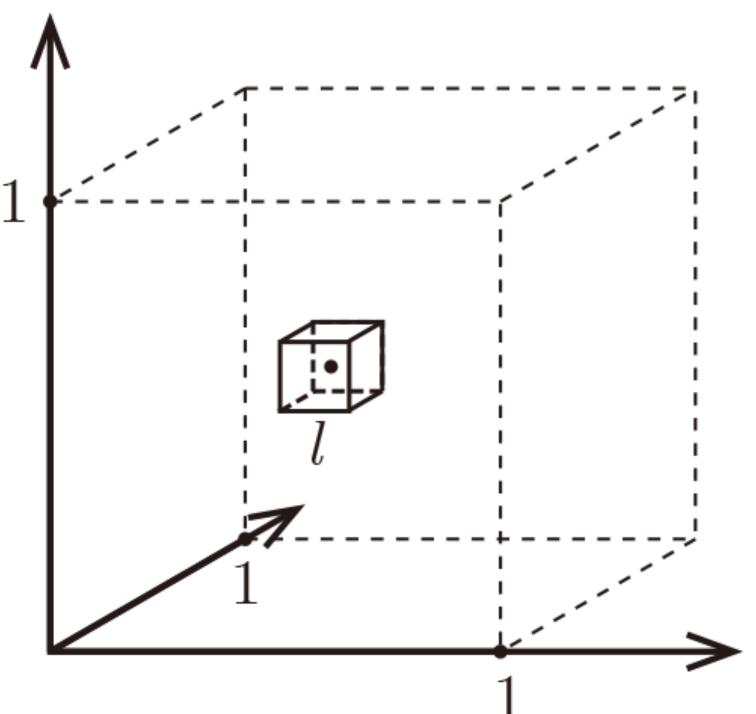


- Key problem: in high dimensional space, points that are draw from a distribution tends to be far away from each other!
- **Example:** let us consider uniform distribution over a cube $[0,1]^d$
 - Q: sample x uniformly, what is the probability that x is inside the small cube?
 - A: Volume(small cube)/volume($[0,1]^d$)

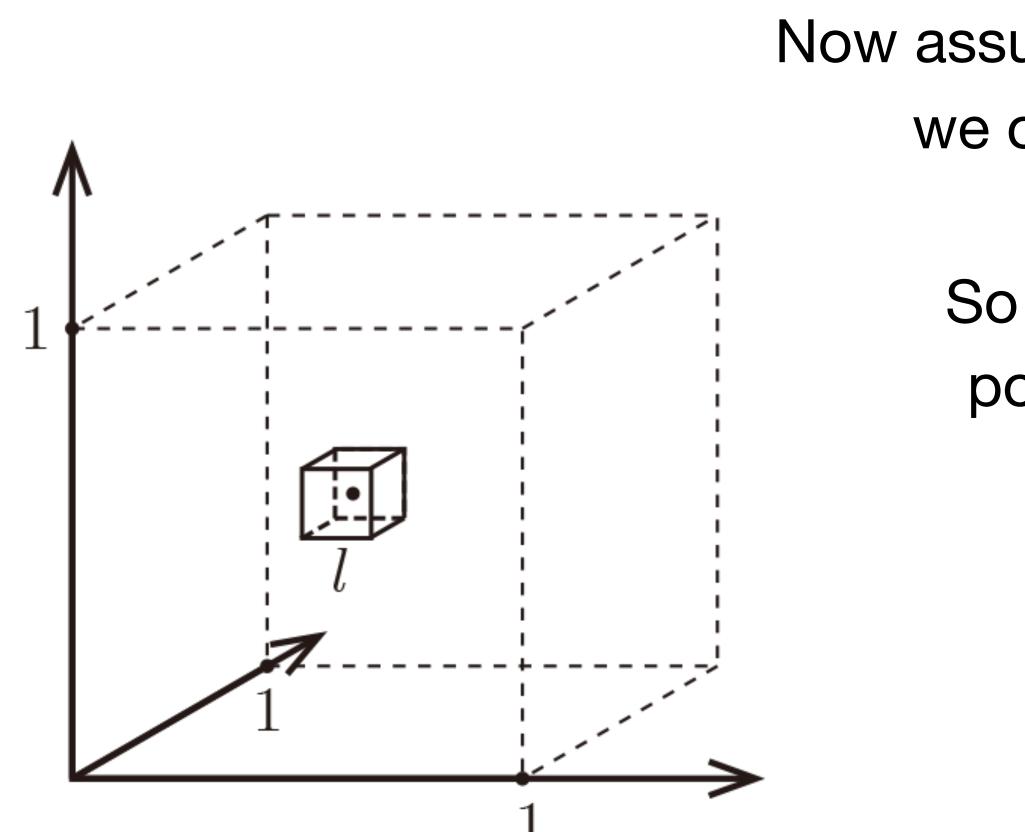


- Key problem: in high dimensional space, points that are draw from a distribution tends to be far away from each other!
- **Example:** let us consider uniform distribution over a cube $[0,1]^d$
 - Q: sample x uniformly, what is the probability that x is inside the small cube?
 - A: Volume(small cube)/volume([0,1]^d) = l^d

Now assume we sample *n* points uniform randomly, and we observe K points fall inside the small cube



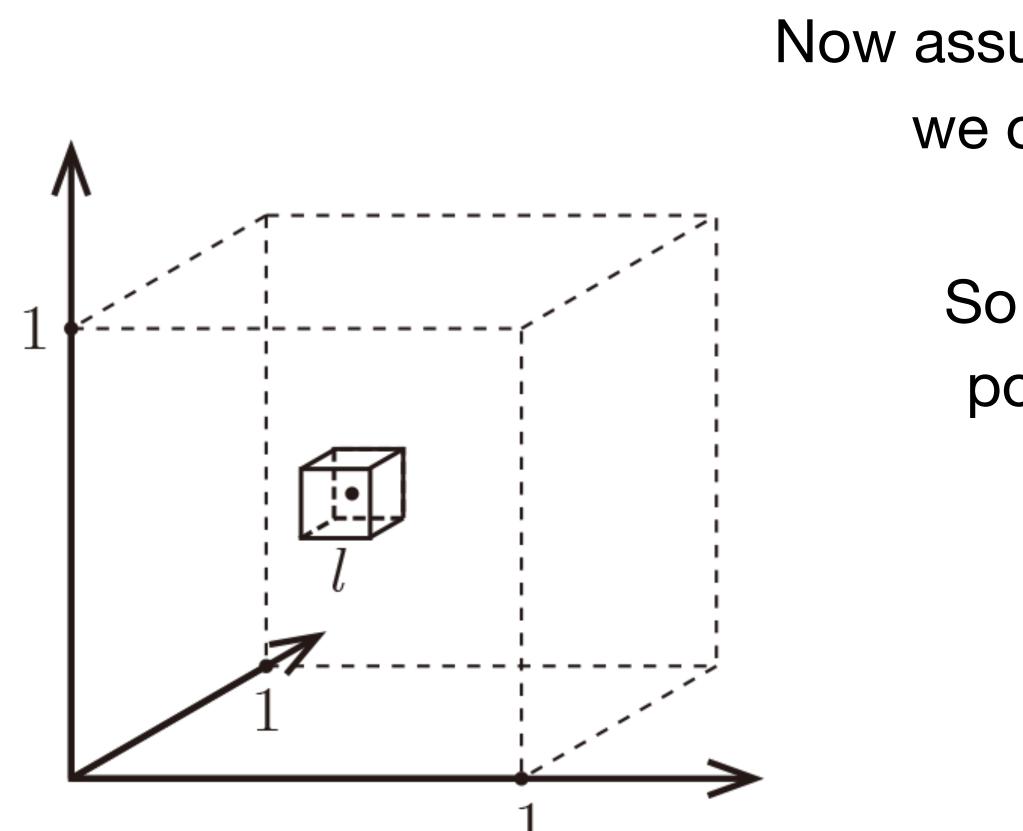
Example: let us consider uniform distribution over a cube $[0,1]^d$



Example: let us consider uniform distribution over a cube $[0,1]^d$

Now assume we sample *n* points uniform randomly, and we observe K points fall inside the small cube

> So empirically, the probability of sampling a point inside the small cube is roughly K/n

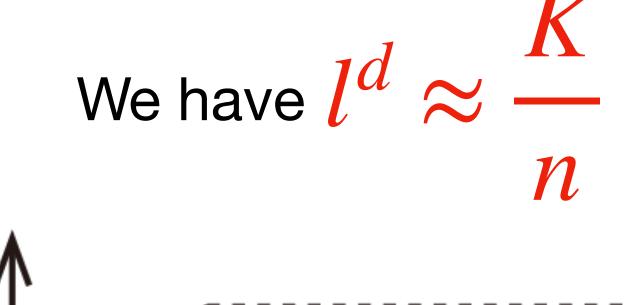


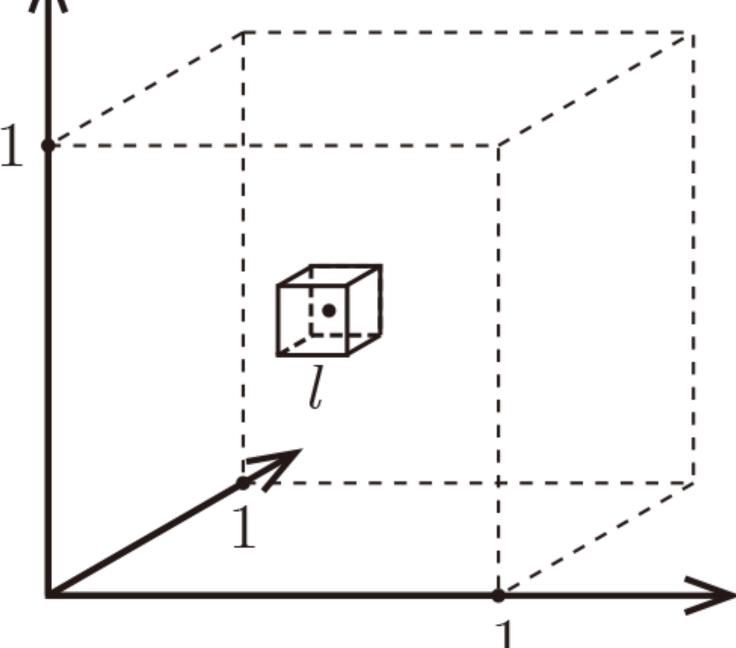
Example: let us consider uniform distribution over a cube $[0,1]^d$

Now assume we sample *n* points uniform randomly, and we observe K points fall inside the small cube

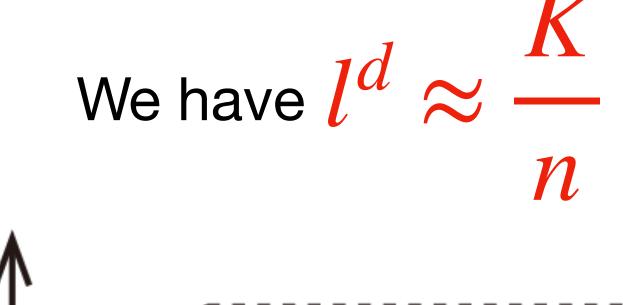
> So empirically, the probability of sampling a point inside the small cube is roughly K/n

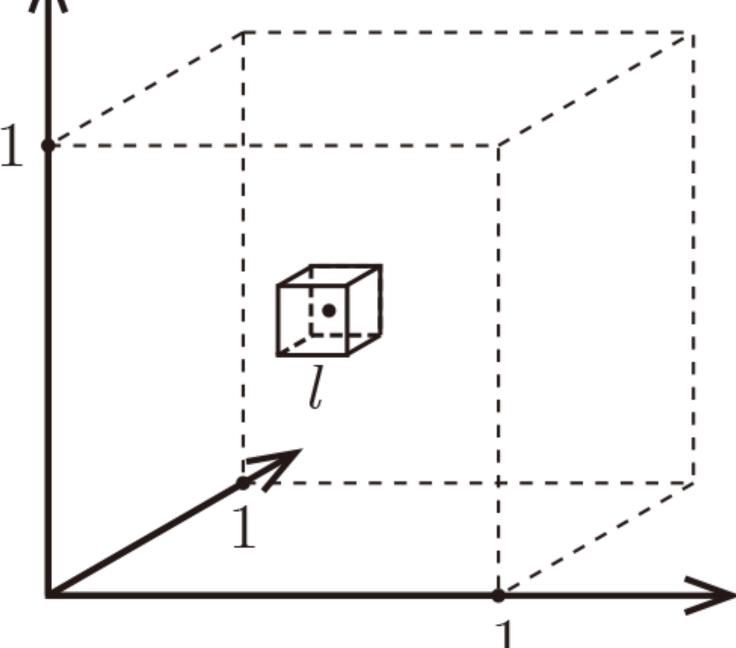
> > Thus, we have $l^{\prime\prime} \approx$ -N





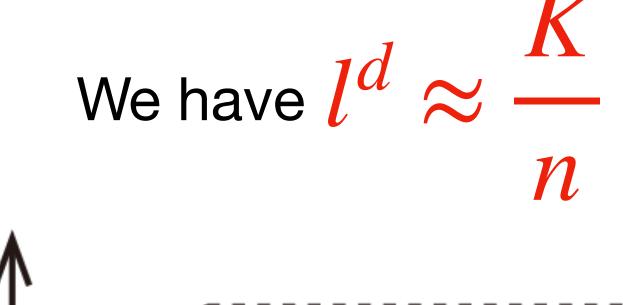
Example: let us consider uniform distribution over a cube $[0,1]^d$

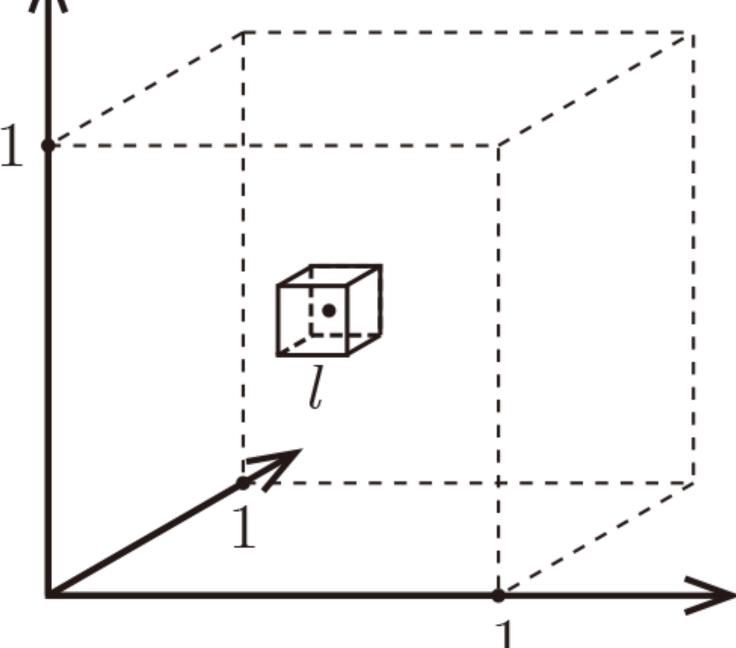




Example: let us consider uniform distribution over a cube $[0,1]^d$

Q: how large we should set l, s.t., we will have K examples (out of n) fall inside the small cube?

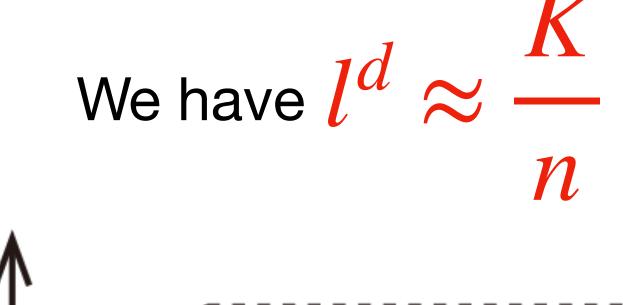


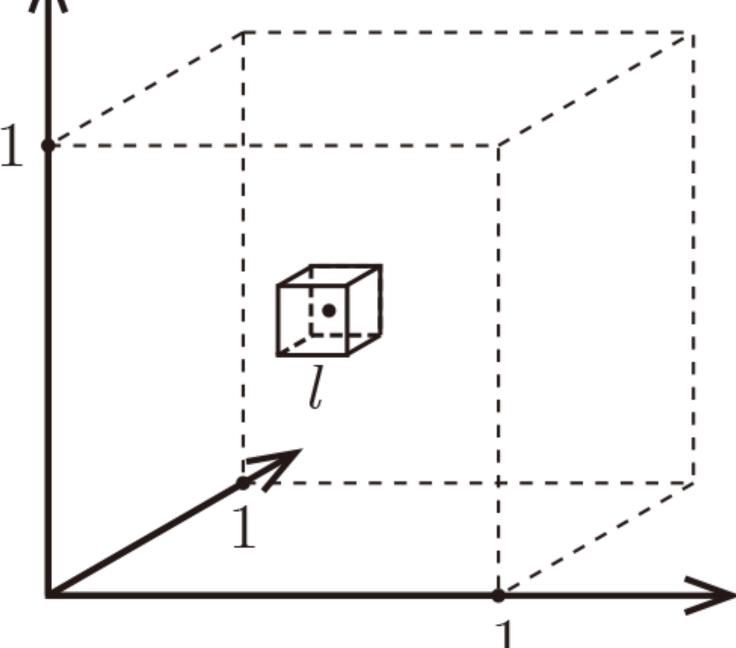


Example: let us consider uniform distribution over a cube $[0,1]^d$

Q: how large we should set l, s.t., we will have K examples (out of n) fall inside the small cube?

 $l \approx (K/n)^{1/d}$

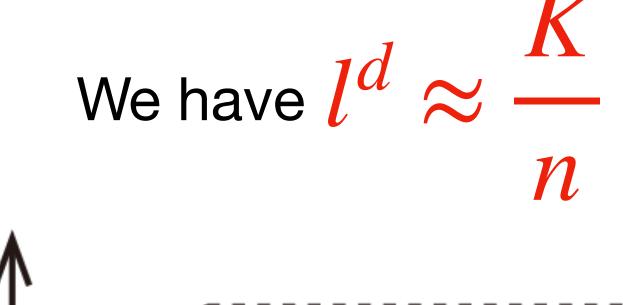


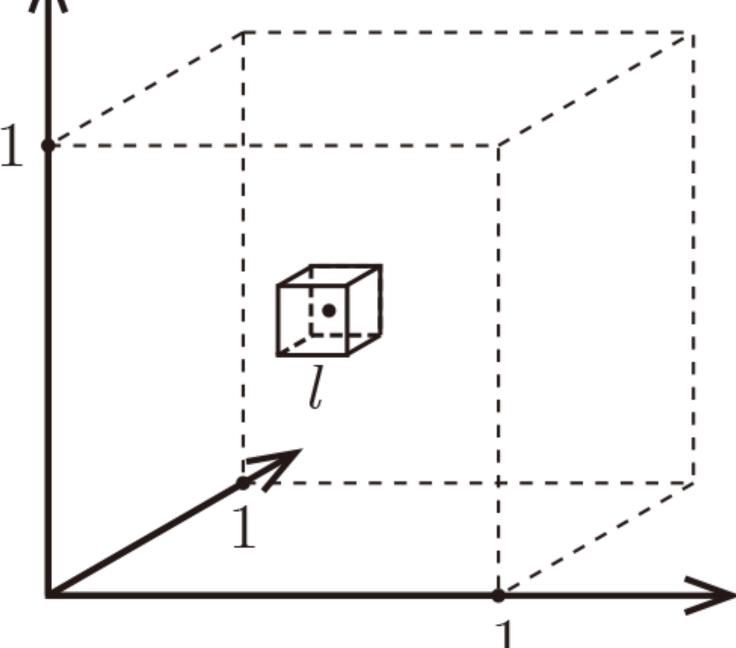


Example: let us consider uniform distribution over a cube $[0,1]^d$

Q: how large we should set l, s.t., we will have K examples (out of n) fall inside the small cube?

$l \approx (K/n)^{1/d} \rightarrow 1$, as $d \rightarrow \infty$





Example: let us consider uniform distribution over a cube $[0,1]^d$

Q: how large we should set l, s.t., we will have K examples (out of n) fall inside the small cube?

$l \approx (K/n)^{1/d} \rightarrow 1$, as $d \rightarrow \infty$

Bad news: when $d \rightarrow \infty$, the K nearest neighbors will be all over the place! (Cannot trust them, as they are not nearby points anymore!)

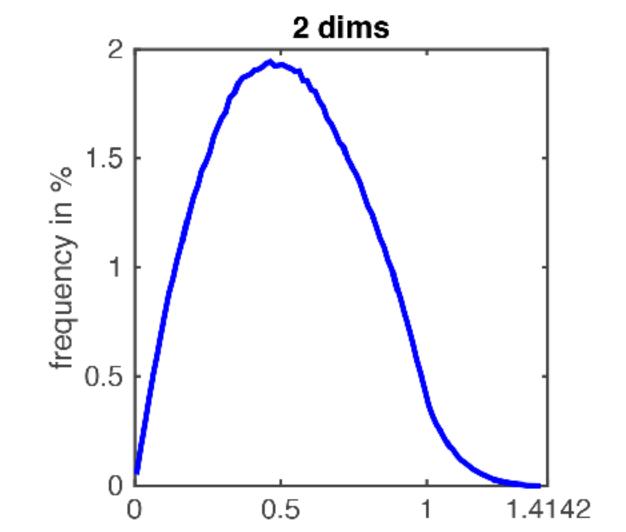
In $[0,1]^d$, we uniformly sample two points x, x', calculate $d(x, x') = \|x - x'\|_2$

In
$$[0,1]^d$$
, we uniformly
sample two points x, x' ,
calculate
 $d(x, x') = ||x - x'||_2$

Let's plot the distribution of such distance:

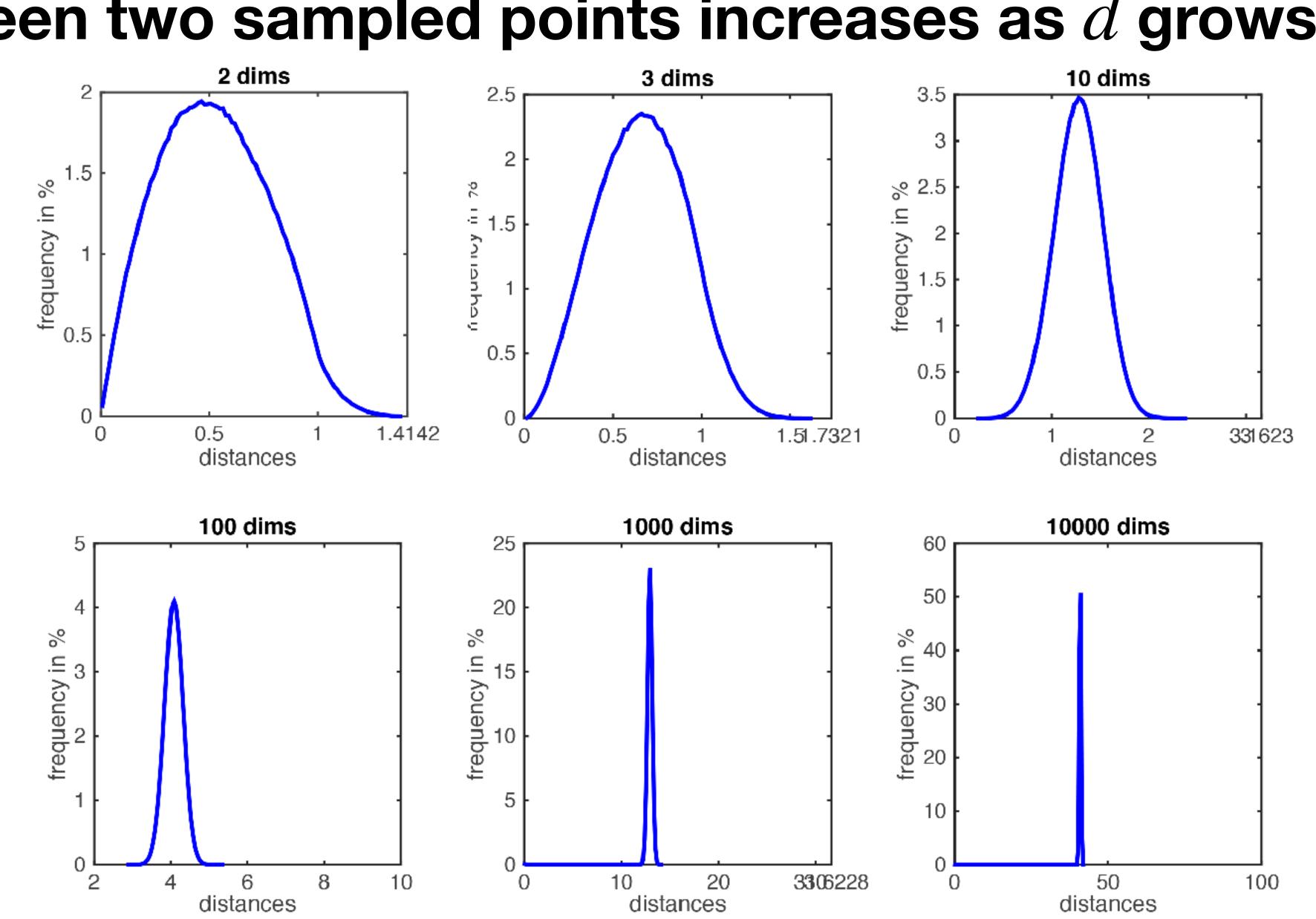
In $[0,1]^d$, we uniformly sample two points x, x', calculate $d(x, x') = \|x - x'\|_2$

> Let's plot the distribution of such distance:



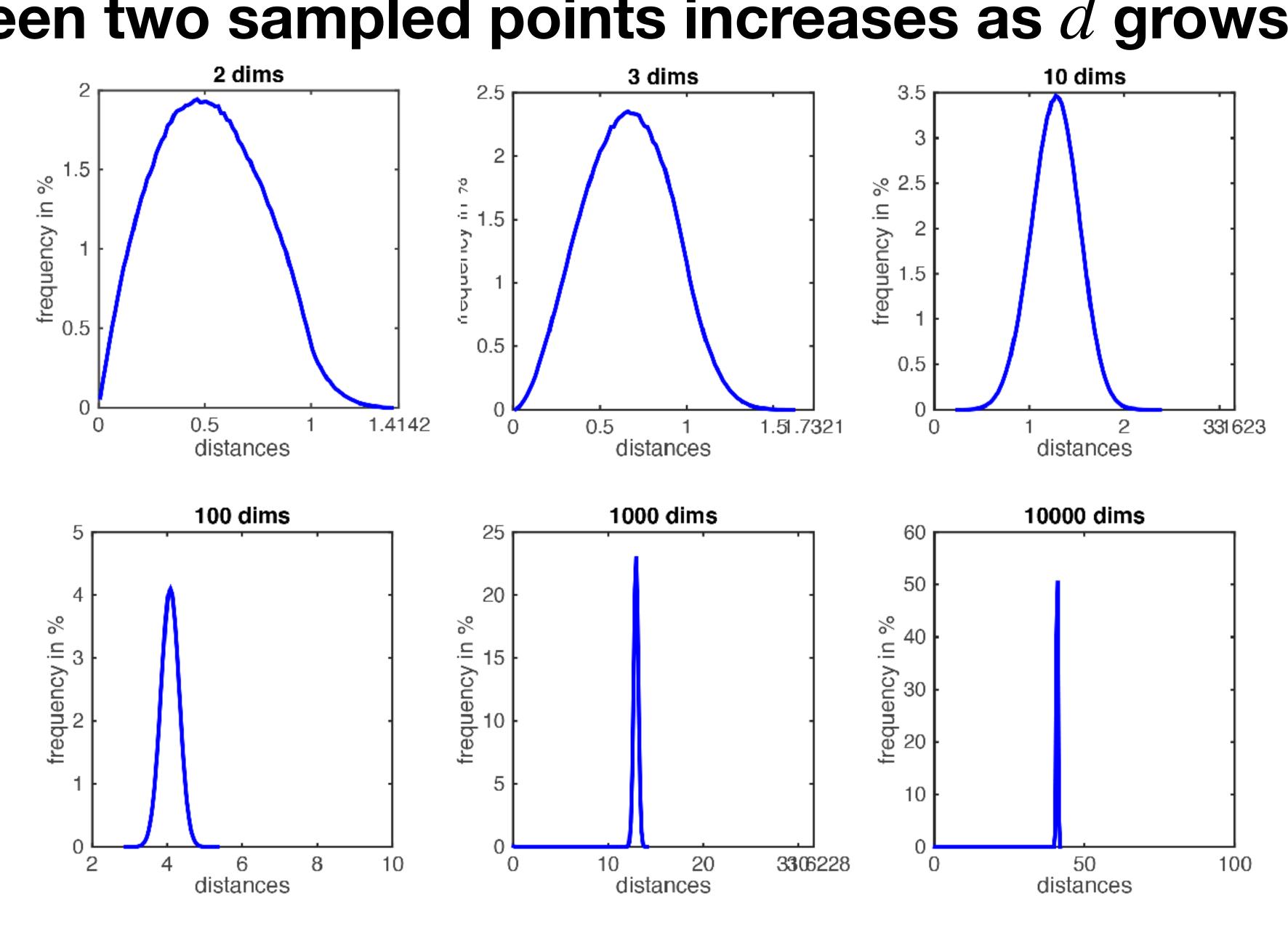
In $[0,1]^d$, we uniformly sample two points x, x', calculate $d(x, x') = \|x - x'\|_{2}$

> Let's plot the distribution of such distance:

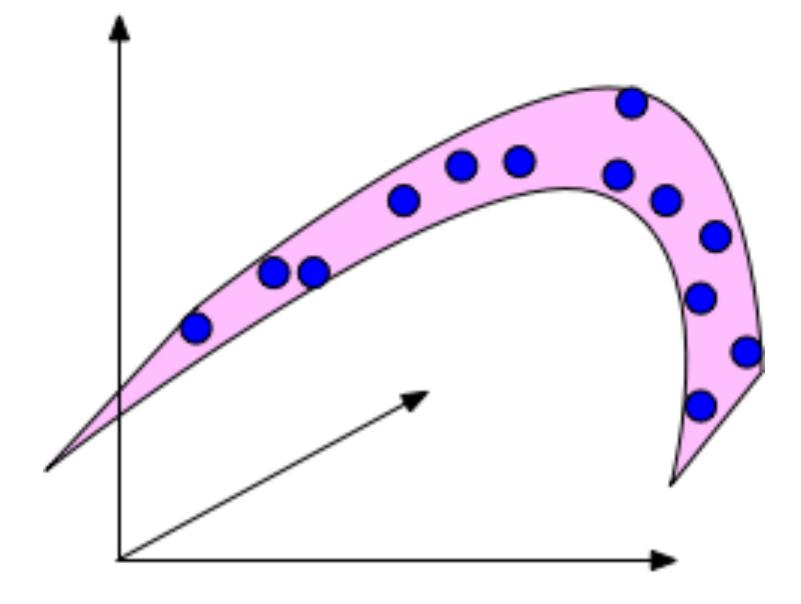


In $[0,1]^d$, we uniformly sample two points x, x', calculate $d(x, x') = \|x - x'\|_2$

> Let's plot the distribution of such distance:



Distance increases as $d \rightarrow \infty$

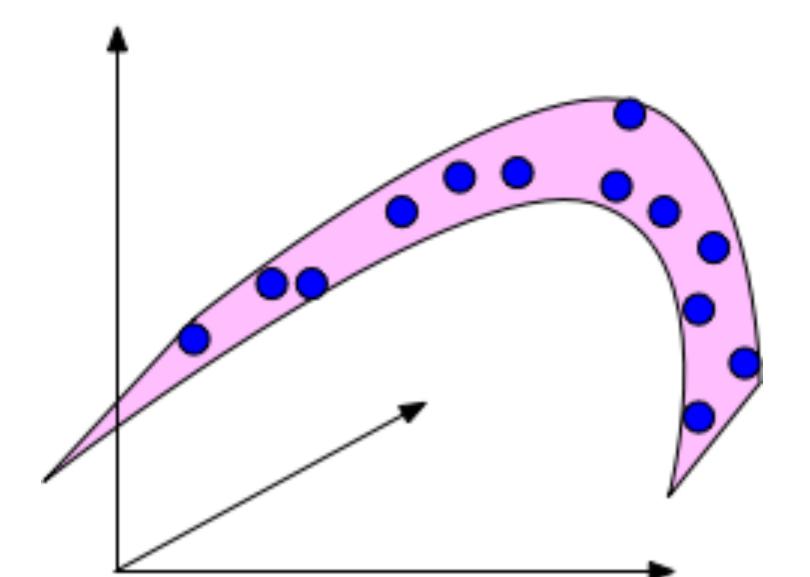


Data lives in 2-d manifold

Example: face images

Queen Elizabeth II

Hillary Clinton



Data lives in 2-d manifold

Arnold Schwarzenegger

David Beckham

Dwayne Johnson

Oprah Winfrey

Gwyneth Paltrow

LeBron James

Marilyn Monroe



George W Bush

Angelina Jolie

Michael Jordan

Azra Akin

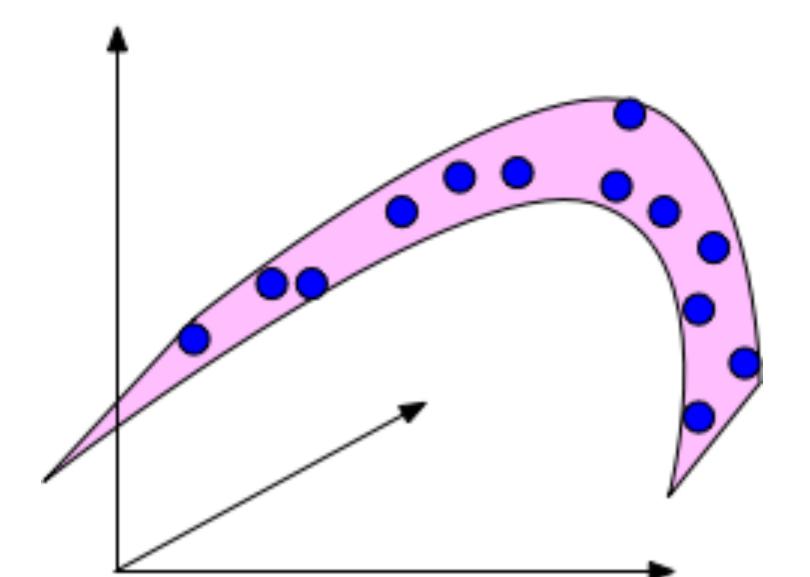
Daniel Radclif



Example: face images

Oueen Elizabeth II

Hillary Clinton



Data lives in 2-d manifold

Arnold Schwarzenegger

David Beckham

Dwayne Johnson

Oprah Winfrey

Gwyneth Paltrow

LeBron James

Marilyn Monroe

George W Bush

Angelina Jolie

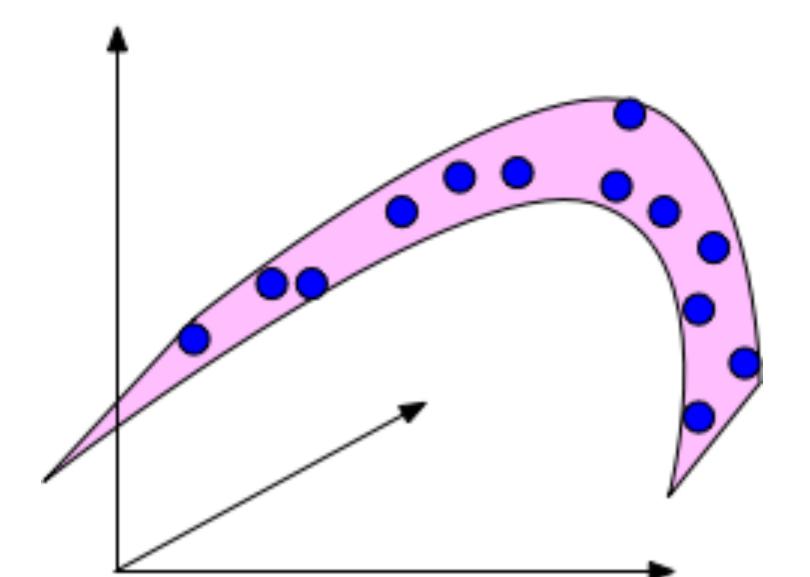
Michael Jordan

Azra Akin

Original image: \mathbb{R}^{64^2}

Example: face images

Hillary Clinton



Data lives in 2-d manifold

Arnold Schwarzenegger

David Beckham

Dwayne Johnson

Oprah Winfrey

Gwyneth Paltrow

LeBron James

Marilyn Monroe

George W Bush

Angelina Jolie

Michael

Azra Akir

Original image: \mathbb{R}^{64^2}

Next week: we will see that these faces approximately live in 100d space!

Summary for Today

1. K-NN: the simplest ML algorithm (very good baseline, should always try!)

Summary for Today

1. K-NN: the simplest ML algorithm (very good baseline, should always try!)

2. Works well when data is low-dimensional (e.g., can compare against the Bayes optimal)

Summary for Today

1. K-NN: the simplest ML algorithm (very good baseline, should always try!)

2. Works well when data is low-dimensional (e.g., can compare against the Bayes optimal)

3. Suffer when data is high-dimensional, due to the fact that in high-dimension space, data tends to spread far away from each other