K-nearest Neighbor



Announcement:

1. HW1 will be out today / early tomorrow and Due Sep 13



Recap



Outline for Today

1. The K-NN Algorithm
2. Why/When does K-NN work

3. Curse of dimensionality (i.e., when it can fail)
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The K-NN Algorithm

Input: classification training dataset {x;, y;}._;, and parameter K & N,
and a distance metric d(x, x") (e.g., |[x — x'||, euclidean distance)

K-NN Algorithm:

Store all training data
For any test point x :

Find its top K nearest neighbors (under metric d)

Return the most common label among these K neighbors

(If for regression, return the average value of the K neighbors)




The K-NN Algorithm

Example: 3-NN for binary classification using Euclidean distance
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The choice of metric

1. We believe our metric d captures similarities between examples:

Examples that are close to each other share similar labels

Another example: Manhattan distance (£';)
d
dx,x) = ) |x[j] = ]|

j=1
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The choice of K

1. What if we set K very large?

Top K-neighbors will include examples that are very far away...

2. What if we set K very small (K=1)?

label has noise (easily overfit to the noise)

(What about the training error when K = 17?)
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2. Why/When does K-NN work

3. Curse of dimensionality (i.e., why it can fail in high-dimension data)
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Bayes Optimal Predictor

Assume our data is collected in an i.i.d fashion, i.e., (x,y) ~ P(sayy € {—1,1})

Bayes optimal predictor: hgpt(x) = arg max P(y|x)
yE{—l,l}

Example:

P(1|x) =0.8 Q: What’s the probability of
P(—1|x)=0.2 h,,: making a mistake on x?

Yp = hopt(x) =1 Copt = 1 — P(y,|x) =0.2
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Guarantee of KNNwhen K =1andn — o

Assume x € [—1,1]%, P(x) has support everywhere P(x) > 0,Vx € [—1,1]?

What does it look when n — 0o ?

Given test x, as n — 00, its nearest neighbor xy;; is super close, i.e., d(x, xyy) — 0!
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Guarantee of KNNwhen K =1andn — o

Theorem: as n — o0, 1-NN prediction error is no more than

twice of the error of the Bayes optimal classifier

Case 1 when yyy = 1 (it happens w/ prob P(1 | xy) = P(1 | x)):
The probability of making a mistake: € = 1 — P(y, | x)

Case 2 when yyy = — 1 (it happens w/ prob P(—1 | xyy) = P(—1|x)):
The probability of making a mistake: ¢ = P(y # — 1 |x) = P(y = 1 |x) = P(y,|x)

Our prediction error at x:

P(11x)(1 = P(y,| %)) + P(=1| 0Py, |x) < (1= P(y,|x) + (1 = P(y, | 1)) = 2€,,
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What happens if K is large?
(e.g., K = 1e6, n - o)

A: Given any x, the K-NN should return the y, — the solution of the Bayes optimal
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Finite sample error rate of 1-NN In high-dimension setting

(Informal result and no proof)

Fix n € NT, assume x € [0,1]%, assume P(y | x) is Lipschitz
continuous with respect to x, i.e., | P(y|x) — P(y |x) | < d(x, x')

Then, we have:

L
= yer |1 # INN()| <2E, ll(y 7 hopt(x))] + 0 ( (—) )

n

The bound is meaningless when d — o0,

Curse of dimensionality! while n is some finite number!
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Key problem: in high dimensional space, points that are draw from a
distribution tends to be far away from each other!

Example: let us consider uniform distribution over a cube [0,1]¢

Q: sample x uniformly, what is the probability that x
Is inside the small cube?

A: Volume(small cube)/volume([0,1]%) = ld
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Curse of Dimensionality Explanation

Example: let us consider uniform distribution over a cube [0,1]¢

Now assume we sample n points uniform randomly, and
we observe K points fall inside the small cube

So empirically, the probability of sampling a
point inside the small cube is roughly K/n

K

Thus, we have ld ~N —
n
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Curse of Dimensionality Explanation

Example: let us consider uniform distribution over a cube [0,1]¢

Q: how large we should set /, s.t., we will

have K examples (out of n) fall inside the
small cube?

|~ (K/In)" > 1, as d - o

Bad news: when d — o0, the K nearest
neighbors will be all over the place!
(Cannot trust them, as they are not nearby
points anymore!)
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The distance between two sampled points increases as d grows

In [0,1]¢, we uniformly
sample two points x, X/,
calculate
d(x,x’) = [lx — x|,

Let’s plot the
distribution of
such distance:
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Luckily, real world data often has low-dimensional structure!

Example: face images

Bill Gates Arnold Schwarzenegger

gﬁ

Queen Elizabeth Il Dav d Beckham

Data lives in 2-d manifold

Gwyneth Paltrow Angelina Jolie

Michael Jordan
\. ‘

Lj m Original image: | 64°

Next week: we will see
that these faces
approximately live in 100-
d space!



Summary for Today

1. K-NN: the simplest ML algorithm (very good baseline, should always try!)



Summary for Today

1. K-NN: the simplest ML algorithm (very good baseline, should always try!)

2. Works well when data is low-dimensional (e.g., can compare
against the Bayes optimal)



Summary for Today

1. K-NN: the simplest ML algorithm (very good baseline, should always try!)

2. Works well when data is low-dimensional (e.g., can compare
against the Bayes optimal)

3. Suffer when data is high-dimensional, due to the fact that in high-
dimension space, data tends to spread far away from each other



