# **Empirical Risk Minimization**

#### Announcements

#### **Recap on Linear Regression**

Given dataset  $\mathcal{D} = \{x_i, y_i\}, x_i \in \mathbb{R}^d, y_i \in \mathbb{R}$ 



#### **Recap on Linear Regression**

Given dataset  $\mathcal{D} = \{x_i, y_i\}, x_i \in \mathbb{R}^d, y_i \in \mathbb{R}$ 

2



Least Regression with squared loss:

$$\arg\min_{w} \sum_{i=1}^{n} (w^{\mathsf{T}} x_i - y_i)^2$$

#### **Recap on Linear Regression**

Given dataset  $\mathcal{D} = \{x_i, y_i\}, x_i \in \mathbb{R}^d, y_i \in \mathbb{R}$ 



Derivation of Normal equation:

$$L(w) := \sum_{i=1}^{n} (w^{\mathsf{T}} x_i - y_i)^2$$

$$\nabla_w L(w) = \mathbf{x} \mathbf{x} \mathbf{w} - \mathbf{x} \mathbf{y}$$

$$\begin{bmatrix} \mathbf{x}_1 \mathbf{x}_1 \cdots \mathbf{x}_n \\ \mathbf{y}_1 \end{bmatrix} \mathbf{y} = \begin{bmatrix} \mathbf{y}_1 \\ \mathbf{y}_2 \\ \mathbf{y}_1 \end{bmatrix}$$

Given dataset  $\mathcal{D} = \{x_i, y_i\}, x_i \in \mathbb{R}^d, y_i \in \{+1, -1\}$ 

#### Hard margin SVM:

# $\min_{w,b} \|w\|_2^2$ $\forall i: y_i(w^{\mathsf{T}}x_i + b) \ge 1$



Given dataset 
$$\mathcal{D} = \{x_i, y_i\}, x_i \in \mathbb{R}^d, y_i \in \{+1, -1\}$$

Hard margin SVM:

 $\min_{w,b} \|w\|_2^2$ 

 $\forall i: y_i(w^{\top}x_i + b) \ge 1$ 



Width of the "street":  $2/||w||_2$ 



#### **Outline for Today**

1. Empirical Risk Minimization

2. Examples on loss & hypothesis classes

3. Regularization

Recall the general supervised learning setting:

#### Recall the general supervised learning setting:

We have some distribution *P*, dataset  $\mathcal{D} = \{x_i, y_i\}_{i=1}^n$ 

Recall the general supervised learning setting:

We have some distribution *P*, dataset  $\mathcal{D} = \{x_i, y_i\}_{i=1}^n$ 

Each data point is i.i.d sampled from *P*, i.e.,  $x_i, y_i \sim P$ 

Recall the general supervised learning setting:

We have some distribution *P*, dataset  $\mathcal{D} = \{x_i, y_i\}_{i=1}^n$ 

Each data point is i.i.d sampled from *P*, i.e.,  $x_i, y_i \sim P$ 

Hypothesis  $h: \mathcal{X} \to \mathbb{R}$ , & hypothesis class  $\mathcal{H} := \{h\} \subset \mathcal{X} \mapsto \mathbb{R}$ 

Recall the general supervised learning setting:

We have some distribution *P*, dataset  $\mathcal{D} = \{x_i, y_i\}_{i=1}^n$ 

Each data point is i.i.d sampled from *P*, i.e.,  $x_i, y_i \sim P$ 

Hypothesis  $h : \mathcal{X} \to \mathbb{R}$ , & hypothesis class  $\mathcal{H} := \{h\} \subset \mathcal{X} \mapsto \mathbb{R}$ 

Loss function:  $\ell(h(x), y)$ 

The ultimate objective function:

$$\arg\min_{h\in\mathscr{H}}\mathbb{E}_{x,y\sim P}\left[\ell(h(x),y)\right]$$

The ultimate objective function:



The ultimate objective function:



Instead we have its empirical version



The ultimate objective function:



Instead we have its empirical version

$$\arg\min_{h\in\mathscr{H}}\frac{1}{n}\sum_{i=1}^{n}\left[\ell(h(x_i), y_i)\right]$$

Empirical risk / Empirical error

$$\hat{h}_{ERM} := \arg\min_{h \in \mathcal{H}} \frac{1}{n} \sum_{i=1}^{n} \left[ \ell(h(x_i), y_i) \right]$$

$$\hat{h}_{ERM} := \arg\min_{h \in \mathcal{H}} \frac{1}{n} \sum_{i=1}^{n} \left[ \ell(h(x_i), y_i) \right]$$

We often are interested in the true performance of  $\hat{h}_{ERM}$ :

$$\hat{h}_{ERM} := \arg\min_{h \in \mathscr{H}} \frac{1}{n} \sum_{i=1}^{n} \left[ \mathscr{\ell}(h(x_i), y_i) \right]$$

We often are interested in the true performance of  $\hat{h}_{ERM}$ :

$$\mathbb{E}_{\mathcal{D}}\left[\mathbb{E}_{x,y\sim P}\ell(\hat{h}_{ERM}(x),y)\right]$$
  
Trank Pator

$$\hat{h}_{ERM} := \arg\min_{h \in \mathcal{H}} \frac{1}{n} \sum_{i=1}^{n} \left[ \ell(h(x_i), y_i) \right]$$

We often are interested in the true performance of  $\hat{h}_{ERM}$ :

$$\mathbb{E}_{\mathcal{D}}\left[\mathbb{E}_{x,y\sim P}\ell(\hat{h}_{ERM}(x),y)\right]$$

Note  $\hat{h}_{ERM}$  is a random quantity as it depends on data  $\mathscr{D}$ 

$$\hat{h}_{ERM} := \arg\min_{h \in \mathcal{H}} \frac{1}{n} \sum_{i=1}^{n} \left[ \ell(h(x_i), y_i) \right]$$

We often are interested in the true performance of  $\hat{h}_{ERM}$ :  $\mathbb{E}_{\mathcal{D}}\left[\mathbb{E}_{x,y\sim P}\ell(\hat{h}_{ERM}(x),y)\right]$ 

Note  $\hat{h}_{ERM}$  is a random quantity as it depends on data  $\mathscr{D}$ 

e.g., In LR:  $\hat{w} = (XX^{\top})^{-1}XY$ .

Ideally, we want the true loss of ERM to be small:

$$\mathbb{E}_{\mathscr{D}}\left[\mathbb{E}_{x,y\sim P}\mathscr{C}(\hat{h}_{ERM}(x),y)\right] \approx \min_{h\in\mathscr{H}}\mathbb{E}_{x,y\sim P}\mathscr{C}(h(x),y)$$

Ideally, we want the true loss of ERM to be small:

$$\mathbb{E}_{\mathscr{D}}\left[\mathbb{E}_{x,y\sim P}\mathscr{E}(\hat{h}_{ERM}(x),y)\right] \approx \min_{h\in\mathscr{H}}\mathbb{E}_{x,y\sim P}\mathscr{E}(h(x),y)$$

The Minimum expected loss we could get if we knew P

Ideally, we want the true loss of ERM to be small:

$$\mathbb{E}_{\mathcal{D}}\left[\mathbb{E}_{x,y\sim P}\mathcal{E}(\hat{h}_{ERM}(x),y)\right] \approx \min_{h\in\mathcal{H}}\mathbb{E}_{x,y\sim P}\mathcal{E}(h(x),y)$$

The Minimum expected loss we could get if we knew P

However, this may not hold if we are not careful about designing  ${\mathscr H}$ 

*P*: *x* uniformly distribution over the square; Label: blue if inside the smaller square, else red



*P*: *x* uniformly distribution over the square; Label: blue if inside the smaller square, else red



Consider a hypothesis class  $\mathscr{H}$  contains ALL mappings from  $x \to y$ 

*P*: *x* uniformly distribution over the square; Label: blue if inside the smaller square, else red



Consider a hypothesis class  $\mathscr{H}$  contains ALL mappings from  $x \to y$ 

Zero one loss  $\ell(h(x), y) = \mathbf{1}(h(x) \neq y)$ 

*P*: *x* uniformly distribution over the square; Label: blue if inside the smaller square, else red



Consider a hypothesis class  $\mathscr{H}$  contains ALL mappings from  $x \to y$ 

Zero one loss  $\ell(h(x), y) = \mathbf{1}(h(x) \neq y)$ 

Let us consider this solution that memorizes data:

*P*: *x* uniformly distribution over the square; Label: blue if inside the smaller square, else red



Consider a hypothesis class  $\mathscr{H}$  contains ALL mappings from  $x \to y$ 

Zero one loss  $\ell(h(x), y) = \mathbf{1}(h(x) \neq y)$ 

Let us consider this solution that memorizes data:

$$\hat{h}(x) = \begin{cases} y_i & \text{if } \exists i, x_i = x \\ +1 & \text{else} \end{cases}$$

*P*: *x* uniformly distribution over the square; Label: blue if inside the dashed square, else red



$$\hat{h}(x) = \begin{cases} y_i & \text{if } \exists i, x_i = x \\ +1 & \text{else} \end{cases}$$

$$\implies \frac{1}{n} \sum_{i=1}^{n} \ell(\hat{h}(x_i), y_i) = 0$$

*P*: *x* uniformly distribution over the square; Label: blue if inside the dashed square, else red



$$\hat{h}(x) = \begin{cases} y_i & \text{if } \exists i, x_i = x \\ +1 & \text{else} \end{cases}$$

$$\implies \frac{1}{n} \sum_{i=1}^{n} \ell(\hat{h}(x_i), y_i) = 0$$

Q: But what's the true expected error of this  $\hat{h}$ ?

*P*: *x* uniformly distribution over the square; Label: blue if inside the dashed square, else red



$$\hat{h}(x) = \begin{cases} y_i & \text{if } \exists i, x_i = x \\ +1 & \text{else} \end{cases}$$

$$\implies \frac{1}{n} \sum_{i=1}^{n} \ell(\hat{h}(x_i), y_i) = 0$$

Q: But what's the true expected error of this  $\hat{h}$ ?

A: area of smaller box / total area

### **ERM** with inductive bias

A common solution is to restrict the search space (i.e., hypothesis class)

$$\hat{h}_{ERM} := \arg\min_{h \in \mathscr{H}} \frac{1}{n} \sum_{i=1}^{n} \left[ \mathscr{\ell}(h(x_i), y_i) \right]$$

### **ERM** with inductive bias

A common solution is to restrict the search space (i.e., hypothesis class)

$$\hat{h}_{ERM} := \arg\min_{h \in \mathscr{H}} \frac{1}{n} \sum_{i=1}^{n} \left[ \ell(h(x_i), y_i) \right]$$

By restricting to  $\mathcal{H}$ , we bias towards solutions from  $\mathcal{H}$ 

*P*: *x* uniformly distribution over the square; Label: blue if inside the dashed square, else red



Unrestricted hypothesis class did not work;

*P*: *x* uniformly distribution over the square; Label: blue if inside the dashed square, else red



Unrestricted hypothesis class did not work;

However, if we restrict  $\mathscr{H}$  to contains ALL axis-aligned rectangles, then ERM will succeed, i.e.,

*P*: *x* uniformly distribution over the square; Label: blue if inside the dashed square, else red

Unrestricted hypothesis class did not work; However, if we restrict  $\mathscr H$  to contains ALL

axis-aligned rectangles, then ERM will succeed, i.e.,

$$\mathbb{E}_{\mathcal{D}}\left[\mathbb{E}_{x,y\sim P}\mathcal{C}(\hat{h}_{ERM}(x),y)\right]$$

$$\leq \min_{h \in \mathcal{H}} \mathbb{E}_{x, y \sim P} \ell(h(x), y) + O(1/\sqrt{n})$$



*P*: *x* uniformly distribution over the square; Label: blue if inside the dashed square, else red



Unrestricted hypothesis class did not work;

However, if we restrict  $\mathscr{H}$  to contains ALL axis-aligned rectangles, then ERM will succeed, i.e.,

$$\mathbb{E}_{\mathcal{D}}\left[\mathbb{E}_{x,y\sim P}\mathscr{C}(\hat{h}_{ERM}(x),y)\right]$$

 $\leq \min_{h \in \mathcal{H}} \mathbb{E}_{x, y \sim P} \ell(h(x), y) + O(1/\sqrt{n})$ 

 $\leq O(1/\sqrt{n})$ 

*P*: *x* uniformly distribution over the square; Label: blue if inside the dashed square, else red



Unrestricted hypothesis class did not work;

However, if we restrict  $\mathscr{H}$  to contains ALL axis-aligned rectangles, then ERM will succeed, i.e.,

$$\Xi_{\mathscr{D}}\left[\mathbb{E}_{x,y\sim P}\mathscr{C}(\hat{h}_{ERM}(x),y)\right]$$

 $\leq O(1/\sqrt{n})$ 

$$\leq \min_{h \in \mathscr{H}} \mathbb{E}_{x, y \sim P} \ell(h(x), y) + O(1/\sqrt{n})$$

(Exact proof out of the scope of this class - see CS 4783/5783)

## Summary so far

ERM with unrestricted hypothesis class could fail (i.e., overfitting)

To guarantee small test error, we need to restrict  ${\mathcal H}$ 

## **Outline for Today**

1. Empirical Risk Minimization

2. Examples on loss & hypothesis classes

3. Regularization

#### **ERM** with restricted hypothesis class

$$\min_{h} \frac{1}{n} \sum_{i=1}^{n} \left[ \ell(h(x_i), y_i) \right]$$
s.t.  $h \in \mathcal{H}$ 

Let's go through several examples on Constraints under the linear regression context

## Linear Regression: squared loss + $\ell_2$ constraint



 $\min_{w} \frac{1}{n} \sum_{i=1}^{n} (w^{\mathsf{T}} x_i - y_i)^2$ 

W

# Linear Regression: squared loss + $\ell_2$ constraint



$$\min_{w} \frac{1}{n} \sum_{i=1}^{n} (w^{\top} x_{i} - y_{i})^{2}$$
s.t.  $||w||_{2}^{2} \le B$ 

 $\omega$ 

# Linear Regression: squared loss + $\ell_2$ constraint



$$\min_{w} \frac{1}{n} \sum_{i=1}^{n} (w^{\mathsf{T}} x_{i} - y_{i})^{2}$$
s.t.  $||w||_{2}^{2} \le B$ 

## Linear Regression: squared loss + $\ell_1$ constraint



## Linear Regression: squared loss + $\ell_1$ constraint



$$\min_{w} \frac{1}{n} \sum_{i=1}^{n} (w^{\top} x_{i} - y_{i})^{2}$$
s.t.  $||w||_{1} \le B$ 

Advantage: give sparse solution

Linear Regression: squared loss +  $\mathcal{C}_p$  constraint



Linear Regression: squared loss +  $\mathcal{C}_p$  constraint





Without constraint, we might overfit to an outlier





# Without constraint, we might overfit to an outlier

With constraint  $||w||_2^2 \le B$ , we can avoid overfitting (i.e., force us to not pay too much attention to minimizing loss)



# Without constraint, we might overfit to an outlier

With constraint  $||w||_2^2 \le B$ , we can avoid overfitting (i.e., force us to not pay too much attention to minimizing loss)



# Without constraint, we might overfit to an outlier

With constraint  $||w||_2^2 \le B$ , we can avoid overfitting (i.e., force us to not pay too much attention to minimizing loss)

(More details in next lecture)



Absolute loss:

$$\begin{split} \min_{w} \frac{1}{n} \sum_{i=1}^{n} \| w^{\mathsf{T}} x_{i} - y_{i} \\ \text{s.t. } R(w) \leq B \end{split}$$

Advantage: less sensitive to outliers



Absolute loss:

$$\min_{w} \frac{1}{n} \sum_{i=1}^{n} |w^{\mathsf{T}} x_{i} - y_{i}|$$
  
s.t.  $R(w) \le B$ 

Advantage: less sensitive to outliers

Disadvantage: no closed-form solution, non-differentiable at 0











## **Linear classification: Hinge loss + constraint**

$$\min_{w,b} \frac{1}{n} \sum_{i=1}^{n} \max\left\{0, \ 1 - y_i(w^{\mathsf{T}}x_i + b)\right\}$$
s.t.  $||w||_2^2 \le B$ 

#### **Linear classification: Hinge loss + constraint**

(Correct)

$$\min_{w,b} \frac{1}{n} \sum_{i=1}^{n} \max\left\{0, 1 - y_{i}(w^{\mathsf{T}}x_{i} + b)\right\}$$
s.t.  $||w||_{2}^{2} \leq B$ 

$$\max\{0, 1 - z\}$$
(wrong)
$$z := y(w^{\mathsf{T}}x + b)$$

(wrong)

#### Linear classification: Hinge loss + constraint



#### **Linear classification: Log-loss + constraints**

$$\min_{w,b} \frac{1}{n} \sum_{i=1}^{n} \ln\left(1 + \exp(-y_i(w^{\mathsf{T}}x_i + b))\right) \\
\text{s.t. } \|w\|_2^2 \le B$$

#### Linear classification: Log-loss + constraints



## Linear classification: Exponential loss + constraints

$$\min_{w,b} \frac{1}{n} \sum_{i=1}^{n} \exp\left(-y_i(w^{\mathsf{T}}x_i + b)\right)$$
s.t.  $||w||_2^2 \le B$ 



#### **Linear classification: Exponential loss + constraints**

$$\min_{w,b} \frac{1}{n} \sum_{i=1}^{n} \exp\left(-y_i(w^{\top}x_i + b)\right)$$
  
s.t.  $||w||_2^2 \le B$ 

(Later, AdaBoost uses this loss)



#### **Linear classification: Exponential loss + constraints**

$$\min_{w,b} \frac{1}{n} \sum_{i=1}^{n} \exp\left(-y_i(w^{\mathsf{T}}x_i + b)\right)$$
  
s.t.  $||w||_2^2 \le B$ 

(Later, AdaBoost uses this loss)

Very aggressive loss (but may overfit w/ noisy data)

7210-042



## **Outline for Today**

1. Empirical Risk Minimization

2. Examples on loss & hypothesis classes

3. Regularization

We can turn constraint optimization problem into unconstrained using Lagrange multiplier

Example:

We can turn constraint optimization problem into unconstrained using Lagrange multiplier

Example:

$$\min_{w} \frac{1}{n} \sum_{i=1}^{n} (w^{\mathsf{T}} x_i - y_i)^2$$
s.t.  $||w||_1 \le B$ 

We can turn constraint optimization problem into unconstrained using Lagrange multiplier

Example:

We can turn constraint optimization problem into unconstrained using Lagrange multiplier

Example:



(More details about Lagrange multiplier in Anil's optimization class CS4220)

Soft-margin SVM:  $\min_{w,b} \sum_{i=1}^{n} \max\left\{0, 1 - y_i(w^{\mathsf{T}}x_i + b)\right\} + \lambda ||w||_2^2$ 

Soft-margin SVM:  $\min_{w,b} \sum_{i=1}^{n} \max\left\{0, 1 - y_i(w^{\mathsf{T}}x_i + b)\right\} + \lambda ||w||_2^2$ 

**Ridge Linear Regression** 

$$\min_{w} \sum_{i=1}^{n} (w^{\mathsf{T}} x_i - y_i)^2 + \lambda \|w\|_2^2$$

Lasso:

$$\min_{w} \sum_{i=1}^{n} (w^{\top} x_{i} - y_{i})^{2} + \lambda \|w\|_{1}$$

Soft-margin SVM:  $\min_{w,b} \sum_{i=1}^{n} \max\left\{0, 1 - y_i(w^{\mathsf{T}}x_i + b)\right\} + \lambda ||w||_2^2$ 

**Ridge Linear Regression** 

$$\min_{w} \sum_{i=1}^{n} (w^{\top} x_i - y_i)^2 + \lambda \|w\|_2^2$$

Lasso:  
$$\min_{w} \sum_{i=1}^{n} (w^{\mathsf{T}} x_{i} - y_{i})^{2} + \lambda ||w||_{1}$$

Returned solution is often sparse!

Soft-margin SVM:  $\min_{w,b} \sum_{i=1}^{n} \max\left\{0, 1 - y_i(w^{\mathsf{T}}x_i + b)\right\} + \lambda \|w\|_2^2$ 

**Ridge Linear Regression** 

$$\min_{w} \sum_{i=1}^{n} (w^{\top} x_i - y_i)^2 + \lambda \|w\|_2^2$$

Lasso:  

$$\min_{w} \sum_{i=1}^{n} (w^{\mathsf{T}} x_{i} - y_{i})^{2} + \lambda ||w||_{1}$$

Returned solution is often sparse!

Good for feature selection!

### **Summary for today**

1. Empirical risk minimization framework

### Summary for today

1. Empirical risk minimization framework

2. Need to restrict our hypothesis class:

Select hypothesis that is simple while can also explain the data reasonably well

### **Summary for today**

1. Empirical risk minimization framework

2. Need to restrict our hypothesis class:

Select hypothesis that is simple while can also explain the data reasonably well

3. Examples of loss functions & Regularizations