Empirical Risk Minimization

Announcements

Recap on Linear Regression

Given dataset $\mathscr{D}=\left\{x_{i}, y_{i}\right\}, x_{i} \in \mathbb{R}^{d}, y_{i} \in \mathbb{R}$

Recap on Linear Regression

Given dataset $\mathscr{D}=\left\{x_{i}, y_{i}\right\}, x_{i} \in \mathbb{R}^{d}, y_{i} \in \mathbb{R}$

Least Regression with squared loss:

$$
\arg \min _{w} \sum_{i=1}^{n}\left(w^{\top} x_{i}-y_{i}\right)^{2}
$$

Recap on Linear Regression

Given dataset $\mathscr{D}=\left\{x_{i}, y_{i}\right\}, x_{i} \in \mathbb{R}^{d}, y_{i} \in \mathbb{R}$

Derivation of Normal equation:

Recap on SVM

$$
\text { Given dataset } \mathscr{D}=\left\{x_{i}, y_{i}\right\}, x_{i} \in \mathbb{R}^{d}, y_{i} \in\{+1,-1\}
$$

Recap on SVM

$$
\text { Given dataset } \mathscr{D}=\left\{x_{i}, y_{i}\right\}, x_{i} \in \mathbb{R}^{d}, y_{i} \in\{+1,-1\}
$$

Hard margin SVM:

$$
\begin{gathered}
\min _{w, b}\|w\|_{2}^{2} \\
\forall i: y_{i}\left(w^{\top} x_{i}+b\right) \geq 1
\end{gathered}
$$

Recap on SVM

$$
\text { Given dataset } \mathscr{D}=\left\{x_{i}, y_{i}\right\}, x_{i} \in \mathbb{R}^{d}, y_{i} \in\{+1,-1\}
$$

Hard margin SVM:

$$
\begin{gathered}
\min _{w, b}\|w\|_{2}^{2} \\
\forall i: y_{i}\left(w^{\top} x_{i}+b\right) \geq 1
\end{gathered}
$$

Width of the "street": $2 /\|w\|_{2}$

Recap on SVM

$$
\text { Given dataset } \mathscr{D}=\left\{x_{i}, y_{i}\right\}, x_{i} \in \mathbb{R}^{d}, y_{i} \in\{+1,-1\}
$$

Hard margin SVM:

$$
\begin{gathered}
\min _{w, b}\|w\|_{2}^{2} \\
\forall i: y_{i}\left(w^{\top} x_{i}+b\right) \geq 1
\end{gathered}
$$

Outline for Today

1. Empirical Risk Minimization
2. Examples on loss \& hypothesis classes
3. Regularization

ERM

Recall the general supervised learning setting:

ERM

Recall the general supervised learning setting:

We have some distribution P, dataset $\mathscr{D}=\left\{x_{i}, y_{i}\right\}_{i=1}^{n}$

ERM

Recall the general supervised learning setting:

We have some distribution P, dataset $\mathscr{D}=\left\{x_{i}, y_{i}\right\}_{i=1}^{n}$
Each data point is i.i.d sampled from P, i.e., $x_{i}, y_{i} \sim P$

ERM

Recall the general supervised learning setting:

We have some distribution P, dataset $\mathscr{D}=\left\{x_{i}, y_{i}\right\}_{i=1}^{n}$
Each data point is i.i.d sampled from P, i.e., $x_{i}, y_{i} \sim P$

Hypothesis $h: \mathscr{X} \rightarrow \mathbb{R}, \&$ hypothesis class $\mathscr{H}:=\{h\} \subset \mathscr{X} \mapsto \mathbb{R}$

ERM

Recall the general supervised learning setting:

We have some distribution P, dataset $\mathscr{D}=\left\{x_{i}, y_{i}\right\}_{i=1}^{n}$
Each data point is i.i.d sampled from P, i.e., $x_{i}, y_{i} \sim P$

Hypothesis $h: \mathscr{X} \rightarrow \mathbb{R}, \&$ hypothesis class $\mathscr{H}:=\{h\} \subset \mathscr{X} \mapsto \mathbb{R}$

Loss function: $\ell(h(x), y)$

ERM

The ultimate objective function:
$\arg \min _{h \in \mathscr{H}} \mathbb{E}_{x, y \sim P}[\ell(h(x), y)]$

ERM

The ultimate objective function:

ERM

The ultimate objective function:

Instead we have its empirical version

ERM

The ultimate objective function:

Instead we have its empirical version

$$
\arg \min _{h \in \mathscr{H}} \frac{1}{n} \sum_{i=1}^{n}\left[\ell\left(h\left(x_{i}\right), y_{i}\right)\right]
$$

ERM

The ultimate objective function:

Instead we have its empirical version

$$
\arg \min _{h \in \mathscr{H}} \frac{1}{n} \sum_{i=1}^{n}\left[\ell\left(h\left(x_{i}\right), y_{i}\right)\right]
$$

Empirical risk / Empirical error

The generalization error of ERM solution

$$
\hat{h}_{E R M}:=\arg \min _{h \in \mathscr{H}} \frac{1}{n} \sum_{i=1}^{n}\left[\ell\left(h\left(x_{i}\right), y_{i}\right)\right]
$$

The generalization error of ERM solution

$$
\hat{h}_{E R M}:=\arg \min _{h \in \mathscr{H}} \frac{1}{n} \sum_{i=1}^{n}\left[\ell\left(h\left(x_{i}\right), y_{i}\right)\right]
$$

We often are interested in the true performance of $\hat{h}_{E R M}$:

The generalization error of ERM solution

$$
\hat{h}_{E R M}:=\arg \min _{h \in \mathscr{H}} \frac{1}{n} \sum_{i=1}^{n}\left[\ell\left(h\left(x_{i}\right), y_{i}\right)\right]
$$

We often are interested in the true performance of $\hat{h}_{E R M}$:

$$
\begin{aligned}
& \mathbb{E}_{\mathscr{D}}\left[\mathbb{E}_{x, y \sim P} \ell\left(\hat{h}_{E R M}(x), y\right)\right] \\
& \text { Tring Patal }
\end{aligned}
$$

The generalization error of ERM solution

$$
\hat{h}_{E R M}:=\arg \min _{h \in \mathscr{H}} \frac{1}{n} \sum_{i=1}^{n}\left[\ell\left(h\left(x_{i}\right), y_{i}\right)\right]
$$

We often are interested in the true performance of $\hat{h}_{E R M}$:

$$
\mathbb{E}_{\mathscr{D}}\left[\mathbb{E}_{x, y \sim P} \ell\left(\hat{h}_{E R M}(x), y\right)\right]
$$

Note $\hat{h}_{E R M}$ is a random quantity as
it depends on data \mathscr{D}

The generalization error of ERM solution

$$
\hat{h}_{E R M}:=\arg \min _{h \in \mathscr{H}} \frac{1}{n} \sum_{i=1}^{n}\left[\ell\left(h\left(x_{i}\right), y_{i}\right)\right]
$$

We often are interested in the true performance of $\hat{h}_{E R M}$:

Note $\hat{h}_{E R M}$ is a random quantity as
it depends on data \mathscr{D}
e.g., In LR: $\hat{w}=\left(X X^{\top}\right)^{-1} X Y$.

The generalization error of ERM solution

Ideally, we want the true loss of ERM to be small:

$$
\mathbb{E}_{\mathscr{D}}\left[\mathbb{E}_{x, y \sim P} \ell\left(\hat{h}_{E R M}(x), y\right)\right] \approx \min _{h \in \mathscr{H}} \mathbb{E}_{x, y \sim P} \ell(h(x), y)
$$

The generalization error of ERM solution

Ideally, we want the true loss of ERM to be small:

$$
\mathbb{E}_{\mathscr{D}}\left[\mathbb{E}_{x, y \sim P} \ell\left(\hat{h}_{E R M}(x), y\right)\right] \approx \min _{h \in \mathscr{H}} \mathbb{E}_{x, y \sim P} \ell(h(x), y)
$$

The Minimum expected loss we could get if we knew P

The generalization error of ERM solution

Ideally, we want the true loss of ERM to be small:

$$
\mathbb{E}_{\mathscr{D}}\left[\mathbb{E}_{x, y \sim P} \ell\left(\hat{h}_{E R M}(x), y\right)\right] \approx \min _{h \in \mathscr{H}} \mathbb{E}_{x, y \sim P} \ell(h(x), y)
$$

The Minimum expected loss we could get if we knew P

However, this may not hold if we are not careful about designing \mathscr{H}

Example:

$P: x$ uniformly distribution over the square;
Label: blue if inside the smaller square, else red

Example:

$P: x$ uniformly distribution over the square;
Label: blue if inside the smaller square, else red

Consider a hypothesis class \mathscr{H} contains ALL mappings from $x \rightarrow y$

Example:

$P: x$ uniformly distribution over the square;
Label: blue if inside the smaller square, else red

Consider a hypothesis class \mathscr{H} contains ALL mappings from $x \rightarrow y$

$$
\text { Zero one loss } \ell(h(x), y)=\mathbf{1}(h(x) \neq y)
$$

Example:

$P: x$ uniformly distribution over the square;
Label: blue if inside the smaller square, else red

> Consider a hypothesis class \mathscr{H} contains ALL mappings from $x \rightarrow y$

> Zero one loss $\ell(h(x), y)=\mathbf{1}(h(x) \neq y)$

> Let us consider this solution that memorizes data:

Example:

$P: x$ uniformly distribution over the square;
Label: blue if inside the smaller square, else red

Consider a hypothesis class \mathscr{H} contains ALL mappings from $x \rightarrow y$

Example:

$P: x$ uniformly distribution over the square;
Label: blue if inside the dashed square, else red

$$
\hat{h}(x)= \begin{cases}y_{i} & \text { if } \exists i, x_{i}=x \\ +1 & \text { else }\end{cases}
$$

$$
\Rightarrow \frac{1}{n} \sum_{i=1}^{n} \ell\left(\hat{h}\left(x_{i}\right), y_{i}\right)=0
$$

Example:

$P: x$ uniformly distribution over the square;
Label: blue if inside the dashed square, else red

$$
\begin{aligned}
& \hat{h}(x)= \begin{cases}y_{i} & \text { if } \exists i, x_{i}=x \\
+1 & \text { else }\end{cases} \\
& \quad \Rightarrow \frac{1}{n} \sum_{i=1}^{n} \ell\left(\hat{h}\left(x_{i}\right), y_{i}\right)=0
\end{aligned}
$$

Q: But what's the true expected error of this \hat{h} ?

Example:

$P: x$ uniformly distribution over the square; Label: blue if inside the dashed square, else red

$$
\hat{h}(x)= \begin{cases}y_{i} & \text { if } \exists i, x_{i}=x \\ +1 & \text { else }\end{cases}
$$

$$
\Rightarrow \frac{1}{n} \sum_{i=1}^{n} \ell\left(\hat{h}\left(x_{i}\right), y_{i}\right)=0
$$

Q: But what's the true expected error of this \hat{h} ?

A: area of smaller box / total area

ERM with inductive bias

A common solution is to restrict the search space (i.e., hypothesis class)

$$
\hat{h}_{E R M}:=\underset{h \in \mathscr{H}}{\arg \min } \frac{1}{n} \sum_{i=1}^{n}\left[\ell\left(h\left(x_{i}\right), y_{i}\right)\right]
$$

ERM with inductive bias

A common solution is to restrict the search space (i.e., hypothesis class)

$$
\hat{h}_{E R M}:=\underset{h \in \mathscr{H}}{\arg \min } \frac{1}{n} \sum_{i=1}^{n}\left[\ell\left(h\left(x_{i}\right), y_{i}\right)\right]
$$

By restricting to \mathscr{H}, we bias towards solutions from \mathscr{H}

Example:

$P: x$ uniformly distribution over the square;
Label: blue if inside the dashed square, else red

Unrestricted hypothesis class did not work;

Example:

$P: x$ uniformly distribution over the square;
Label: blue if inside the dashed square, else red

Unrestricted hypothesis class did not work;

However, if we restrict \mathscr{H} to contains ALL axis-aligned rectangles, then ERM will succeed, i.e.,

Example:

$P: x$ uniformly distribution over the square;
Label: blue if inside the dashed square, else red

Unrestricted hypothesis class did not work;

However, if we restrict \mathscr{H} to contains ALL axis-aligned rectangles, then ERM will succeed, i.e.,

$$
\begin{aligned}
& \mathbb{E}_{\mathscr{D}}\left[\mathbb{E}_{x, y \sim P} \ell\left(\hat{h}_{E R M}(x), y\right)\right] \\
& \quad \leq \underbrace{\min _{h, y \sim P}}_{h \in \mathscr{H}} \mathbb{E}_{x,(h(x), y)}+O(1 / \sqrt{n}) \\
& =0
\end{aligned}
$$

Example:

$P: x$ uniformly distribution over the square;
Label: blue if inside the dashed square, else red

Unrestricted hypothesis class did not work;

However, if we restrict \mathscr{H} to contains ALL axis-aligned rectangles, then ERM will succeed, i.e.,

$$
\begin{aligned}
\mathbb{E}_{\mathscr{D}} & {\left[\mathbb{E}_{x, y \sim P} \ell\left(\hat{h}_{E R M}(x), y\right)\right] } \\
& \leq \min _{h \in \mathscr{H}} \mathbb{E}_{x, y \sim P} \ell(h(x), y)+O(1 / \sqrt{n}) \\
& \leq O(1 / \sqrt{n})
\end{aligned}
$$

Example:

$P: x$ uniformly distribution over the square;
Label: blue if inside the dashed square, else red

Unrestricted hypothesis class did not work;

However, if we restrict \mathscr{H} to contains ALL axis-aligned rectangles, then ERM will succeed, i.e.,

$$
\begin{aligned}
\mathbb{E}_{\mathscr{D}} & {\left[\mathbb{E}_{x, y \sim P} \ell\left(\hat{h}_{E R M}(x), y\right)\right] } \\
& \leq \min _{h \in \mathscr{H}} \mathbb{E}_{x, y \sim P} \ell(h(x), y)+O(1 / \sqrt{n}) \\
& \leq O(1 / \sqrt{n})
\end{aligned}
$$

(Exact proof out of the scope of this class - see CS 4783/5783)

Summary so far

ERM with unrestricted hypothesis class could fail (i.e., overfitting)

To guarantee small test error, we need to restrict \mathscr{H}

Outline for Today

1. Empirical Risk Minimization
2. Examples on loss \& hypothesis classes
3. Regularization

ERM with restricted hypothesis class

$$
\begin{gathered}
\min _{h} \frac{1}{n} \sum_{i=1}^{n}\left[\ell\left(h\left(x_{i}\right), y_{i}\right)\right] \\
\text { s.t. } h \in \mathscr{H}
\end{gathered}
$$

Let's go through several examples on Constraints under the linear regression context

Linear Regression: squared loss $+\ell_{2}$ constraint

$$
\min _{w} \frac{1}{n} \sum_{i=1}^{n}\left(w^{\top} x_{i}-y_{i}\right)^{2}
$$

Linear Regression: squared loss $+\ell_{2}$ constraint

$$
\min _{w} \frac{1}{n} \sum_{i=1}^{n}\left(w^{\top} x_{i}-y_{i}\right)^{2}
$$

$$
\text { s.t. }\|w\|_{2}^{2} \leq B
$$

Linear Regression: squared loss $+\ell_{2}$ constraint

$\min _{w} \frac{1}{n} \sum_{i=1}^{n}\left(w^{\top} x_{i}-y_{i}\right)^{2}$

$$
\text { s.t. }\|w\|_{2}^{2} \leq B
$$

Linear Regression: squared loss $+\ell_{1}$ constraint

$$
\begin{gathered}
\min _{w} \frac{1}{n} \sum_{i=1}^{n}\left(w^{\top} x_{i}-y_{i}\right)^{2} \\
\text { s.t. }\|w\|_{1} \leq B \\
\|w\|_{1}=\sum_{i=1}^{d}\left|w_{i}\right|
\end{gathered}
$$

Linear Regression: squared loss $+\ell_{1}$ constraint

$$
\min _{w} \frac{1}{n} \sum_{i=1}^{n}\left(w^{\top} x_{i}-y_{i}\right)^{2}
$$

$$
\text { s.t. }\|w\|_{1} \leq B
$$

Advantage: give sparse solution

Linear Regression: squared loss $+\ell_{p}$ constraint

$$
\min _{w} \frac{1}{n} \sum_{i=1}^{n}\left(w^{\top} x_{i}-y_{i}\right)^{2}
$$

$$
\text { s.t. }\|w\|_{p} \leq B
$$

$$
0<p<1
$$

Linear Regression: squared loss $+\ell_{p}$ constraint

$$
\begin{gathered}
\min _{w} \frac{1}{n} \sum_{i=1}^{n}\left(w^{\top} x_{i}-y_{i}\right)^{2} \\
\text { s.t. }\|w\|_{p} \leq B \\
0<p<1
\end{gathered}
$$

Advantage of ℓ_{p} constraint : very sparse solution Disadvantage: Non-convex

Constraints help avoid overfitting

Without constraint, we might overfit to an outlier

Constraints help avoid overfitting

Without constraint, we might overfit to an outlier

With constraint $\|w\|_{2}^{2} \leq B$, we can avoid overfitting (i.e., force us to not pay too much attention to minimizing loss)

Constraints help avoid overfitting

Without constraint, we might overfit to an outlier

With constraint $\|w\|_{2}^{2} \leq B$, we can avoid overfitting (i.e., force us to not pay too much attention to minimizing loss)

Constraints help avoid overfitting

Without constraint, we might overfit to an outlier

With constraint $\|w\|_{2}^{2} \leq B$, we can avoid overfitting (i.e., force us to not pay too much attention to minimizing loss)
(More details in next lecture)

Other loss functions with linear regression

Absolute loss:

Other loss functions with linear regression

Absolute loss:

$$
\begin{aligned}
\min _{w} & \frac{1}{n} \sum_{i=1}^{n}\left|w^{\top} x_{i}-y_{i}\right| \\
\text { s.t. } & R(w) \leq B
\end{aligned}
$$

Advantage: less sensitive to outliers

Other loss functions with linear regression

Absolute loss:

$$
\begin{aligned}
\min _{w} & \frac{1}{n} \sum_{i=1}^{n}\left|w^{\top} x_{i}-y_{i}\right| \\
\text { s.t. } & R(w) \leq B
\end{aligned}
$$

Advantage: less sensitive to outliers

Disadvantage: no closed-form solution, non-differentiable at 0

Other loss functions with linear regression

Green: huber with $\delta=1$

Other loss functions with linear regression

$$
\begin{gathered}
\text { Huber loss: } \\
\min _{w} \frac{1}{n} \sum_{i=1}^{n} L_{\delta}\left(w^{\top} x-y\right) \\
\text { s.t. } R(w) \leq B \\
\text { Where } \\
L_{\delta}(z)= \begin{cases}z^{2} / 2 & |z| \leq \delta \\
\delta(|z|-\delta / 2) & \text { else }\end{cases}
\end{gathered}
$$

Advantage: best of both worlds

Other loss functions with linear regression

$$
\begin{gathered}
\text { Huber loss: } \\
\min _{w} \frac{1}{n} \sum_{i=1}^{n} L_{\delta}\left(w^{\top} x-y\right) \\
\text { s.t. } R(w) \leq B \\
\text { Where } \\
L_{\delta}(z)= \begin{cases}z^{2} / 2 & |z| \leq \delta \\
\delta(|z|-\delta / 2) & \text { else }\end{cases}
\end{gathered}
$$

Advantage: best of both worlds Disadvantage: additional parameter δ to tune

Green: huber with $\delta=1$

Linear classification: Hinge loss + constraint

$$
\begin{gathered}
\min _{w, b} \frac{1}{n} \sum_{i=1}^{n} \max \left\{0,1-y_{i}\left(w^{\top} x_{i}+b\right)\right\} \\
\text { s.t. }\|w\|_{2}^{2} \leq B
\end{gathered}
$$

Linear classification: Hinge loss + constraint

$$
\begin{gathered}
\min \frac{1}{n} \sum_{i=1}^{n} \max \left\{0,1-y_{i}\left(w^{\top} x_{i}+b\right)\right\} \\
\text { s.t. }\|w\|_{2}^{2} \leq B
\end{gathered}
$$

Linear classification: Hinge loss + constraint

$$
\min _{w, b} \frac{1}{n} \sum_{i=1}^{n} \max \left\{0,1-y_{i}\left(w^{\top} x_{i}+b\right)\right\}
$$

$$
\text { s.t. }\|w\|_{2}^{2} \leq B
$$

Constraint avoids overfit: (Recall: small $\|w\|_{2}$ should have large street width)

Linear classification: Log-loss + constraints

$$
\begin{gathered}
\min _{w, b} \frac{1}{n} \sum_{i=1}^{n} \ln \left(1+\exp \left(-y_{i}\left(w^{\top} x_{i}+b\right)\right)\right) \\
\text { s.t. }\|w\|_{2}^{2} \leq B
\end{gathered}
$$

Linear classification: Log-loss + constraints

$$
\begin{gathered}
\min _{w, b} \frac{1}{n} \sum_{i=1}^{n} \ln \left(1+\exp \left(-y_{i}\left(w^{\top} x_{i}+b\right)\right)\right) \\
\text { s.t. }\|w\|_{2}^{2} \leq B
\end{gathered}
$$

Linear classification: Exponential loss + constraints

$$
\begin{gathered}
\min _{w, b} \frac{1}{n} \sum_{i=1}^{n} \exp \left(-y_{i}\left(w^{\top} x_{i}+b\right)\right) \\
\text { s.t. }\|w\|_{2}^{2} \leq B
\end{gathered}
$$

Linear classification: Exponential loss + constraints

$$
\begin{gathered}
\min _{w, b} \frac{1}{n} \sum_{i=1}^{n} \exp \left(-y_{i}\left(w^{\top} x_{i}+b\right)\right) \\
\text { s.t. }\|w\|_{2}^{2} \leq B
\end{gathered}
$$

(Later, AdaBoost uses this loss)

Linear classification: Exponential loss + constraints

$$
\begin{gathered}
\min _{w, b} \frac{1}{n} \sum_{i=1}^{n} \exp \left(-y_{i}\left(w^{\top} x_{i}+b\right)\right) \\
\text { s.t. }\|w\|_{2}^{2} \leq B
\end{gathered}
$$

(Later, AdaBoost uses this loss)
Very aggressive loss (but may overfit w/ noisy data)

Outline for Today

\author{

1. Empirical Risk Minimization
}
2. Examples on loss \& hypothesis classes
3. Regularization

Regularization

We can turn constraint optimization problem into unconstrained using Lagrange multiplier

Example:

Regularization

We can turn constraint optimization problem into unconstrained using Lagrange multiplier

Example:
$\min _{w} \frac{1}{n} \sum_{i=1}^{n}\left(w^{\top} x_{i}-y_{i}\right)^{2}$
s.t. $\|w\|_{1} \leq B$

Regularization

We can turn constraint optimization problem into unconstrained using Lagrange multiplier

Example:

$$
\min _{w} \frac{1}{n} \sum_{i=1}^{n}\left(w^{\top} x_{i}-y_{i}\right)^{2}
$$

$$
\text { s.t. }\|w\|_{1} \leq B
$$

Regularization

We can turn constraint optimization problem into

 unconstrained using Lagrange multiplier
Example:

$$
\begin{gathered}
\min _{w} \frac{1}{n} \sum_{i=1}^{n}\left(w^{\top} x_{i}-y_{i}\right)^{2} \\
\text { s.t. }\|w\|_{1} \leq B
\end{gathered}
$$

$$
\min _{w} \frac{1}{n} \sum_{i=1}^{n}\left(w^{\top} x_{i}-y_{i}\right)^{2}+
$$

(More details about Lagrange multiplier in Anil's optimization class CS4220)

Examples:

Soft-margin SVM:

$$
\min _{w, b} \sum_{i=1}^{n} \max \left\{0,1-y_{i}\left(w^{\top} x_{i}+b\right)\right\}+\lambda\|w\|_{2}^{2}
$$

Examples:

Soft-margin SVM:
$\min _{w, b} \sum_{i=1}^{n} \max \left\{0,1-y_{i}\left(w^{\top} x_{i}+b\right)\right\}+\lambda\|w\|_{2}^{2}$
Ridge Linear Regression

$$
\min _{w} \sum_{i=1}^{n}\left(w^{\top} x_{i}-y_{i}\right)^{2}+\lambda\|w\|_{2}^{2}
$$

Examples:

Soft-margin SVM:

$$
\min _{w, b} \sum_{i=1}^{n} \max \left\{0,1-y_{i}\left(w^{\top} x_{i}+b\right)\right\}+\lambda\|w\|_{2}^{2}
$$

Ridge Linear Regression

$$
\begin{gathered}
\min _{w} \sum_{i=1}^{n}\left(w^{\top} x_{i}-y_{i}\right)^{2}+\lambda\|w\|_{2}^{2} \\
\text { Lasso: } \\
\min _{w} \sum_{i=1}^{n}\left(w^{\top} x_{i}-y_{i}\right)^{2}+\lambda\|w\|_{1}
\end{gathered}
$$

Examples:

Soft-margin SVM:

$$
\min _{w, b} \sum_{i=1}^{n} \max \left\{0,1-y_{i}\left(w^{\top} x_{i}+b\right)\right\}+\lambda\|w\|_{2}^{2}
$$

Ridge Linear Regression

$$
\begin{array}{cc}
\min _{w} \sum_{i=1}^{n}\left(w^{\top} x_{i}-y_{i}\right)^{2}+\lambda\|w\|_{2}^{2} & \\
\text { Lasso: } & \text { Returned solution is } \\
\min _{w} \sum_{i=1}^{n}\left(w^{\top} x_{i}-y_{i}\right)^{2}+\lambda\|w\|_{1} & \text { often sparse! }
\end{array}
$$

Examples:

Soft-margin SVM:

$$
\min _{w, b} \sum_{i=1}^{n} \max \left\{0,1-y_{i}\left(w^{\top} x_{i}+b\right)\right\}+\lambda\|w\|_{2}^{2}
$$

Ridge Linear Regression

$$
\min _{w} \sum_{i=1}^{n}\left(w^{\top} x_{i}-y_{i}\right)^{2}+\lambda\|w\|_{2}^{2}
$$

Lasso:

$$
\min _{w} \sum_{i=1}^{n}\left(w^{\top} x_{i}-y_{i}\right)^{2}+\lambda\|w\|_{1}
$$

Returned solution is often sparse!

Good for feature selection!

Summary for today

1. Empirical risk minimization framework

Summary for today

1. Empirical risk minimization framework
2. Need to restrict our hypothesis class:

Select hypothesis that is simple while can also explain the data reasonably well

Summary for today

1. Empirical risk minimization framework
2. Need to restrict our hypothesis class:

Select hypothesis that is simple while can also explain the data reasonably well
3. Examples of loss functions \& Regularizations

