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Recap on SVM 
Given dataset ! = {xi, yi}, xi ∈ ℝd, yi ∈ {+1, − 1}

Hard margin SVM: 

∀i : yi(w⊤xi + b) ≥ 1

min
w,b

∥w∥2
2

Width of the “street”:

2/∥w∥2

Find a “street” that has 
largest width, while keep all 

the points outside of the 
street



Outline for Today

1. Empirical Risk Minimization

3. Regularization 

2. Examples on loss & hypothesis classes 
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ERM

Recall the general supervised learning setting:

We have some distribution , dataset P ! = {xi, yi}n
i=1

Each data point is i.i.d sampled from , i.e., P xi, yi ∼ P

Hypothesis , & hypothesis class h : + → ℝ ℋ := {h} ⊂ + ↦ ℝ

Loss function:  ℓ(h(x), y)
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ERM

The ultimate objective function:

arg min
h∈ℋ

0x,y∼P [ℓ(h(x), y)]
Unknown

Instead we have its empirical version

arg min
h∈ℋ

1
n

n

∑
i=1

[ℓ(h(xi), yi)]
Empirical risk / Empirical error
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ĥERM := arg min
h∈ℋ

1
n

n

∑
i=1

[ℓ(h(xi), yi)]



The generalization error of ERM solution
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The generalization error of ERM solution

ĥERM := arg min
h∈ℋ

1
n

n

∑
i=1

[ℓ(h(xi), yi)]

We often are interested in the true performance of :ĥERM

0! [0x,y∼Pℓ(ĥERM(x), y)]
Note  is a random quantity as 

it depends on data 
ĥERM

!
e.g., In LR: . ŵ = (XX⊤)−1XY
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The generalization error of ERM solution

Ideally, we want the true loss of ERM to be small:

0! [0x,y∼Pℓ(ĥERM(x), y)] ≈ min
h∈ℋ

0x,y∼Pℓ(h(x), y)

The Minimum expected loss we could 
get if we knew  P

However, this may not hold if we are not careful about designing ℋ
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ℋ
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Example:
:  uniformly distribution 

over the square; 

Label: blue if inside the 
dashed square, else red

P x

ĥ(x) = {yi  if ∃i, xi = x
+1 else

1
n

n

∑
i=1

ℓ(ĥ(xi), yi) = 0⇒
Q: But what’s the true expected error of this ? ĥ

A: area of smaller box / total area 

−1

+1
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ERM with inductive bias

A common solution is to restrict the search space (i.e., hypothesis class)

ĥERM := arg min
h∈ℋ

1
n

n

∑
i=1

[ℓ(h(xi), yi)]

By restricting to , we bias towards 
solutions from 

ℋ
ℋ
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Example:
:  uniformly distribution 

over the square; 

Label: blue if inside the 
dashed square, else red

P x

−1

+1

Unrestricted hypothesis class did not work;

However, if we restrict  to contains ALL 
axis-aligned rectangles, 


then ERM will succeed, i.e., 

ℋ

0! [0x,y∼Pℓ(ĥERM(x), y)]
≤ min

h∈ℋ
0x,y∼Pℓ(h(x), y) + O(1/ n)

≤ O(1/ n)
(Exact proof out of the scope of this class — see CS 4783/5783)



Summary so far

ERM with unrestricted hypothesis class could fail (i.e., overfitting)

To guarantee small test error, we need to restrict ℋ
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3. Regularization 



ERM with restricted hypothesis class

min
h

1
n

n

∑
i=1

[ℓ(h(xi), yi)]

s.t. h ∈ ℋ

Let’s go through several examples on Constraints under the linear regression context
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Linear Regression: squared loss +  constraintℓp

min
w

1
n

n

∑
i=1

(w⊤xi − yi)2

s.t. ∥w∥p ≤ B

0 < p < 1

Advantage of  constraint : very sparse solutionℓp
Disadvantage: Non-convex
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Constraints help avoid overfitting
x

Without constraint, we might 
overfit to an outlier 

With constraint , we 
can avoid overfitting (i.e., force us 
to not pay too much attention to 

minimizing loss)

∥w∥2
2 ≤ B

(More details in next lecture)
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Other loss functions with linear regression

Absolute loss:

min
w

1
n

n

∑
i=1

|w⊤xi − yi |

 s.t.  R(w) ≤ B

z := w⊤x − y

|z |

Advantage: less sensitive to outliers

Disadvantage: no closed-form solution, 
non-differentiable at 0
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Other loss functions with linear regression

Huber loss:

min
w

1
n

n

∑
i=1

Lδ(w⊤x − y)

 s.t.  R(w) ≤ B

Where 

Lδ(z) = {z2/2 |z | ≤ δ
δ( |z | − δ/2) else

Blue: z2/2

Green: huber with δ = 1
Advantage: best of both worlds

Disadvantage: additional parameter  to tuneδ
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Linear classification: Hinge loss + constraint

min
w,b

1
n

n

∑
i=1

max {0, 1 − yi(w⊤xi + b)}
 s.t.  ∥w∥2

2 ≤ B

Constraint avoids overfit: 

(Recall: small  should have 

large street width)
∥w∥2

z := y(w⊤x + b)

max{0,1 − z}

1

(Correct)
(wrong)
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Linear classification: Log-loss + constraints

min
w,b

1
n

n

∑
i=1

ln (1 + exp(−yi(w⊤xi + b)))
 s.t.  ∥w∥2

2 ≤ B

z := y(w⊤x + b)

max{0,1 − z}

1
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Linear classification: Exponential loss + constraints

min
w,b

1
n

n

∑
i=1

exp (−yi(w⊤xi + b))
 s.t.  ∥w∥2

2 ≤ B

(Later, AdaBoost uses this loss)

Very aggressive loss (but 
may overfit w/ noisy data)
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Regularization

We can turn constraint optimization problem into 
unconstrained using Lagrange multiplier  

Example: 

min
w

1
n

n

∑
i=1

(w⊤xi − yi)2

s.t. ∥w∥1 ≤ B

min
w

1
n

n

∑
i=1

(w⊤xi − yi)2 + λ∥w∥2
2

(More details about Lagrange multiplier in Anil’s optimization class CS4220)
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Soft-margin SVM:

min
w,b

n

∑
i=1

max {0,1 − yi(w⊤xi + b)} + λ∥w∥2
2

Ridge Linear Regression

min
w

n

∑
i=1

(w⊤xi − yi)2 + λ∥w∥2
2

Lasso:

min
w

n

∑
i=1

(w⊤xi − yi)2 + λ∥w∥1

Returned solution is 
often sparse! 

Good for feature 
selection!
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2. Need to restrict our hypothesis class:

Select hypothesis that is simple while can also explain the data reasonably well

3. Examples of loss functions & Regularizations


