Empirical Risk Minimization
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Least Regression with squared loss:

n
arg min Z (w'x; — y,)?
w
i=1
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Derivation of Normal equation:
n
L(w) = Z (wal- — yi)2
i=1

V, L(w) =
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Recap on SVM

Given dataset 2 = {x,y;},x; € R%,y. € {+1, — 1}

Width of the “street”:
2/wll,

Hard margin SVM:

: 2
min |[w||3
w,b

Vi: y(w'x;+b) > 1

Find a “street” that has
largest width, while keep all
the points outside of the
street




Outline for Today

1. Empirical Risk Minimization

2. Examples on loss & hypothesis classes

3. Regularization
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ERM

Recall the general supervised learning setting:

We have some distribution P, dataset & = {x;, y;}\_,

Each data point is i.i.d sampled from P, i.e., x;, y; ~ P
Hypothesis & : & — R, & hypothesis class # := {h} C X — R

Loss function: Z(h(x), y)
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The ultimate objective function:

arg ;r;[f(hm,y)]

™~ Unknown

Instead we have its empirical version

arg min — Z [f (h(x),y,) ]

he N

Empirical risk / Empirical error



The generalization error of ERM solution
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The generalization error of ERM solution

A

hgpy := arg min — Z [f(h(x) yl)]

he# Nn

We often are interested in the true performance of iAzERM:

@UERM(X) Y)]

Note lAzERM Is a random quantity as
it depends on data &

e.g., InLR: w = (XX ")~1XY.
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The generalization error of ERM solution

|deally, we want the true loss of ERM to be small:

[E@ [Ex,yNPf(ilERM(x)a y) ~ ?ég; [Ex,yNPz’ﬂ(h(x)a y)

The Minimum expected loss we could
get if we knew P

However, this may not hold if we are not careful about designing #
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P: x uniformly distribution
over the square;
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smaller square, else red
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Example:

Consider a hypothesis class # contains ALL
mappings fromx — vy

Zero one loss Z(h(x),y) = 1(h(x) # y)

Let us consider this solution that memorizes
data;

~ . if Ji.x. =
o= {1 130n=s
+1 else
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Example:

P: x uniformly distribution
over the square;
Label: blue if inside the

dashed square, else red lAz(x) _ {)’i if Ji,x;=x
+1 else
o
® Py +1 1 n R
f——m = — 2 {hx),y) =0
I [ I o i=1
@ -1
| o |
® : o o I o Q: But what’s the true expected error of this /1?
I
Ps ¢ A: area of smaller box / total area
@ o
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ERM with inductive bias

A common solution is to restrict the search space (i.e., hypothesis class)

ilERM = arg %{;; 2 [f (h(x;),y;) ]

By restricting to # ', we bias towards
solutions from #
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P: x uniformly distribution

over the square;

Label: blue if inside the
dashed square, else red

+1

Example:

Unrestricted hypothesis class did not work;

However, if we restrict # to contains ALL
axis-aligned rectangles,
then ERM will succeed, i.e.,

Eg [[Ex,yNPZ’ﬂ (ilERM(x)a Y)]
<minE,, pZ(h(x),y) + O(1/y/n)
hex

< O(1/y/n)

(Exact proof out of the scope of this class — see CS 4783/5783)



Summary so far

ERM with unrestricted hypothesis class could fail (i.e., overfitting)

To guarantee small test error, we need to restrict #
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ERM with restricted hypothesis class

n

1
min— " [£(h(x)). )]
hon i=1

st he #

Let’s go through several examples on Constraints under the linear regression context
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Linear Regression: squared loss + | constraint

min — Z (w'x; — y,)?
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Linear Regression: squared loss + | constraint

1 n
: 2
mvin . .El w'x;, —y)
1=

st. |wll, < B

Advantage: give sparse solution




Linear Regression: squared loss + ¢ D constraint




Linear Regression: squared loss + ¢ D constraint

Advantage of D constraint : very sparse solution

Disadvantage: Non-convex
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Without constraint, we might
overfit to an outlier

With constraint ||w||% < B, we

can avoid overfitting (i.e., force us
to not pay too much attention to
minimizing loss)

(More details in next lecture)
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Other loss functions with linear regression

Absolute loss:

1 n
: T
min — E lw'x; — |
W

s.t. Rw)<B

Advantage: less sensitive to outliers

Disadvantage: no closed-form solution,

non-differentiable at 0
—
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Other loss functions with linear regression

Huber loss:

1 n
min — L{(w'x—
n ; 5( y)
s.t. Rw)<B

Where

2
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Advantage: best of both worlds

Blue: z2/2

Green: huber with 0 = 1




Other loss functions with linear regression

Huber loss: 8 ,
1 & 4\ Blue: z2/2
min — Z Lyw'x =) ¢
w n-*
i=1 .
s.t. Rw)<B
4
Where ;
2
7712 z| <6 2
%@z{ 2]
5(|z| —8/2) else 1
Advantage: best of both worlds I T A S

Disadvantage: additional parameter 0 to tune Green: huber with 0 = 1



Linear classification: Hinge loss + constraint

nvgl% ; max {O, 1 —y(w'x; + b)}

s.t. |wll3<B



Linear classification: Hinge loss + constraint

mm—ZmaX {O 1—yl(w X; +b)}

w,b N

t. llwll;<B

max{0,1 — z}

N
N

: z:=y(w'x+b)

(wrong)
_ (Correct)




Linear classification: Hinge loss + constraint

Constraint avoids overfit:

min — Z max {O 1 —y(w'x + b)} (Recall: small ||w||, should have
wb N large street width)

st |[w|2<B

max{0,1 — z}

AN
l (wrong)

: z:=y(w'x+b)

ﬁ(Correct)




Linear classification: Log-loss + constraints

1 n
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Linear classification: Log-loss + constraints

1 n
min — Z In (1 + exp(—yl-(wal- + b)))
wb n i
st |[wl|?<B

max{0,1 — z}

1

z:=y(w'x+b)



Linear classification: Exponential loss + constraints

1y :
Izvl’lbn;izzlexp (—yl-(w X; + b))

st w2 <B
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Linear classification: Exponential loss + constraints

minl Z exp (—yl.(wal- + b))

b N
W i=1

st w2 <B

(Later, AdaBoost uses this loss)
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Linear classification: Exponential loss + constraints

minl Z exp (—yl.(wal- + b))

b N
W i=1

st w2 <B

(Later, AdaBoost uses this loss)

Very aggressive loss (but
may overfit w/ noisy data)

——Hinge

——Logistic
Exponential

——Zero-One
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Regularization

We can turn constraint optimization problem into
unconstrained using Lagrange multiplier

Example:

1 n
. T 2
min — W' X:.— V.
i — izzl,( )

N R
H mln;Z(wai—yi)2+/1||w||§

~
st ||wll, <B ’



Regularization

We can turn constraint optimization problem into
unconstrained using Lagrange multiplier

Example:

)Hw?/i
.1 |
H Hivln; lzzl (w'x;—y) +4%%

.1
min — Z (w'x; — y,)°
w n“
=1
st |lwll; <B

(More details about Lagrange multiplier in Anil’s optimization class CS4220)
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Examples:

Soft-margin SVM:
mm Z max {O 1 —y(w'x + b)} + /1IIWI|2
i=1

Ridge Linear Regression

n

min Z w'x; — y)* + /1||W||%

Vo=

Lasso: Returned solution is

) often sparse!
mm 2 w'x; —y)* + Alwll,

" Good for feature
l

selection!



Summary for today

1. Empirical risk minimization framework



Summary for today

1. Empirical risk minimization framework

2. Need to restrict our hypothesis class:

Select hypothesis that is simple while can also explain the data reasonably well



Summary for today

1. Empirical risk minimization framework

2. Need to restrict our hypothesis class:

Select hypothesis that is simple while can also explain the data reasonably well

3. Examples of loss functions & Regularizations



