Empirical Risk Minimization
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Recap on Linear Regression
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Derivation of Normal equation:
L(w) := Z (wal- - yl-)2
i=1

V., L(w) =
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Recap on SVM

Given dataset @ = {x,y,},x, € R% y, € {+1, — 1}

Width of the “street”:
21w,

Hard margin SVM:

- )
min ||w||5
w,b

Vi: y(w'x,+b)>1

Find a “street” that has
largest width, while keep all
the points outside of the
Street




Outline for Today

1. Empirical Risk Minimization

2. Examples on loss & hypothesis classes

3. Regularization
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ERM

Recall the general supervised learning setting:

We have some distribution P, dataset 4 = {x;, y;}"_,

Each data point is i.i.d sampled from P, i.e., x;, y; ~ P

Hypothesis 1 : & — R, & hypothesisclass #Z = {h} C I |

Loss function: £(h(x), y)



ERM

The ultimate objective function:

arg min —x,y~P [Z’ﬂ(h(x)a y)]
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ERM

The ultimate objective function:

arg gé[f (h(x), y)]

T~ Unknown

Instead we have its empirical version

arg min — Z [f (h(x;), yl)]

he# N

Empirical risk / Empirical error



The generalization error of ERM solution

h = arg min — z/”h
Ry $= arg min ~ Z (h(x)), )
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The generalization error of ERM solution

n

A\

1
Mgy i= arg min — [?/ﬂ (h(x;), yi)]
heZ Nn 1

We often are interested in the true performance of iLERM:

g [[Ex,yNPf (ilERM(x)a Y)]

Note izERM IS a random quantity as
it depends on data &

e.g., InLR: w = (XX ")~ lXY.
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The generalization error of ERM solution

|deally, we want the true loss of ERM to be small:

= | Eeypl 0,30 |~ minE, o (), )
he#

The Minimum expected loss we could
get if we knew P

However, this may not hold if we are not careful about designing #
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Example:

P: x uniformly distribution
over the square;

Label: blue if inside the Consider a hypothesis class # contains ALL
smaller square, else red mappings from x — y
o ° 4
® Zero one loss £(h(x),y) = 1(h(x) # y)
r==—=-"1
o ' '_1 ! ¢ Let us consider this solution that memorizes
| @ o | data:
ol oo ! ©
' l A - if 3i,x. =x
————— o h(x) = {yl |
® +1 else
® ®




Example:

P: x uniformly distribution
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Example:

P: x uniformly distribution

over the square;
Label: blue if inside the

dashed square, else red ]Aq(x) _ {)’i if i, X; =X
+1 else
o ° 4
® l & -
P === = $ ;Zf(h(xi),y,-)=0
| O | @ i=1
o ° —1
| o |
® : °*® o I o Q: But what’s the true expected error of this /?
l
® ® A: area of smaller box / total area
® ®
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ERM with inductive bias

A common solution is to restrict the search space (i.e., hypothesis class)

n

A\

|
he# N “
=1
By restricting to # , we bias towards
solutions from #Z
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Example:

P: x uniformly distribution
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Example:

P: x uniformly distribution

over the square;
Label: blue if inside the
dashed square, else red

Unrestricted hypothesis class did not work;

However, if we restrict #Z to contains ALL

e ® 1 axis-aligned rectangles,
® then ERM will succeed, I.e.,
r===-"1
I O ® -
® e : =9 [_x,yNPf (hERM(x)aY)]
o
o' oo I o <minE, _pZ(h(x),y) + O(1/7/n)
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P: x uniformly distribution

over the square;

Label: blue if inside the
dashed square, else red
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Example:

Unrestricted hypothesis class did not work;

However, if we restrict #Z to contains ALL

axis-aligned rectangles,
then ERM will succeed, I.e.,

=P [ _x,yNPf (]/;tERM(x)a Y)]

<minE,, pZ(h(x),y) + O(1/y/n)
hex

< 0(1/4/n)




P: x uniformly distribution

over the square;

Label: blue if inside the
dashed square, else red

+1
c

Example:

Unrestricted hypothesis class did not work;

However, if we restrict #Z to contains ALL

axis-aligned rectangles,
then ERM will succeed, I.e.,

=P [ _x,yNPf (]/;tERM(x)a Y)]

<minE,, pf(h(x),y) + O(1/y/n)
hex

< 0(1/4/n)

(Exact proof out of the scope of this class — see CS 4783/5783)




Summary so far

ERM with unrestricted hypothesis class could fail (i.e., overfitting)

To guarantee small test error, we need to restrict #
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1. Empirical Risk Minimization

2. Examples on loss & hypothesis classes

3. Regularization



ERM with restricted hypothesis class

n

1
min — [f (h(x;), yl-)]
oo

st he A

Let’s go through several examples on Constraints under the linear regression context
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Linear Regression: squared loss + £, constraint

1 n
- T p)
min — w ' X. — V.
1 — izzl,( =y,

st. |wll, < B

Advantage: give sparse solution
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Linear Regression: squared loss + ¢ b constraint

Advantage of £ b constraint : very sparse solution

Disadvantage: Non-convex
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Without constraint, we might
overfit to an outlier

With constraint ||w]|5 < B, we

can avoid overfitting (i.e., force us

to not pay too much attention to
minimizing loss)

(More details in next lecture)
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Other loss functions with linear regression

Absolute loss:
t | z]

1 14}
: T
min — E lw'x; — ]
w ni—l

s.t. Rlw)< B

Advantage: less sensitive to outliers

Disadvantage: no closed-form solution,
non-differentiable at O

=W XxX—Y
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Other loss functions with linear regression

Huber loss: g ,
| 1\ Blue: z2/2
min — 2 Ls(w'x =) ;
w Nn “
=1 :
s.t. Rlw)<B
Where ;
2
z°/2 z| <o 2
La(Z) = { 2]
5(|z| —8/2) else 1
Advantage: best of both worlds i -3 -2 -1 0 1 2

Disadvantage: additional parameter o0 to tune Green: huber with 0 = 1



Linear classification: Hinge loss + constraint
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Linear classification: Hinge loss + constraint

mln—ZmaX {O 1 —y(w'x, +b)}

w,b N

S.1. HWH2 <B

max{0,1 — z}

z:=y(w'x+b)

(wrong)
_ (Correct)



Linear classification: Hinge loss + constraint

Constraint avoids overfit:

min — Z max {() ] — yl(w X + b)} (Recall: small ||w||, should have
w,b N large street width)

S.1. Hsz <B

max{0,1 — z}

1 z:=vy(w'x + b)

(wrong)
_ ﬁ(Correct)
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Linear classification: Log-loss + constraints

n

1 .
min— ) In (1 + exp(—y,(w " x; + b)))

b n
v i=1

st. |wl2<B

max{0,1 — z}

z:=y(w'x+b)



Linear classification: Exponential loss + constraints

n di
. 1 T 45| ——Hinge
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Linear classification: Exponential loss + constraints

B -
K , iy =
o 5t S t
min— ) exp (—y(w'x; + b)) Exponential
wb N ——Zero-One
=

st. |wl|?<B

(Later, AdaBoost uses this loss)




Linear classification: Exponential loss + constraints

1 ¢ =iz
min— ) exp (—y(w'x; + b)) | Exponential
wb N ——Zero-One

=1
st. |wl|?<B

(Later, AdaBoost uses this loss)

Very aggressive loss (but
may overfit w/ noisy data) 0.5}
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Regularization

We can turn constraint optimization problem into
unconstrained using Lagrange multiplier

Example:

1 n
. )
min — W' 'X. — V.
i — i:zf( =y,

1 n
: T 9) 9)
min — w'x: —Vv.)°+ Allw
H i — izzl,( ;= Y)" + Alwl[5

s.t. [[w]|; £B

(More detalils about Lagrange multiplier in Anil’s optimization class CS4220)
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Examples:

Soft-margin SVM:
mm Z max {O ] — yl(w X; + b)} + /IHWH2

Ridge Linear Regression

n

min z (w'x;—y)" + /WMB

Y=

Lasso: Returned solution is

2 often sparse!
mm 2 (w'x, — y)* + Alwll
=1

Good for feature
selection!
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Summary for today

1. Empirical risk minimization framework

2. Need to restrict our hypothesis class:

Select hypothesis that is simple while can also explain the data reasonably well

3. Examples of loss functions & Regularizations



