Bias-Variance Tradeoff & Model Selection

Announcements

HW5 and P5 are coming out

Denote $h_{\mathcal{D}}$ as the ERM solution on dataset \mathcal{D} w/ squared loss $\ell(h, x, y) = (h(x) - y)^2$

Denote $h_{\mathcal{D}}$ as the ERM solution on dataset \mathcal{D} w/ squared loss $\ell(h, x, y) = (h(x) - y)^2$

What we have shown is the Bias-Variance decomposition:

$$\mathbb{E}_{\mathcal{D},x,y}(h_{\mathcal{D}}(x) - y)^{2} = \mathbb{E}_{\mathcal{D},x}(h_{\mathcal{D}}(x) - \bar{h}(x))^{2} + \mathbb{E}_{x}(\bar{h}(x) - \bar{y}(x))^{2} + \mathbb{E}_{x,y}(\bar{y}(x) - y)^{2}$$

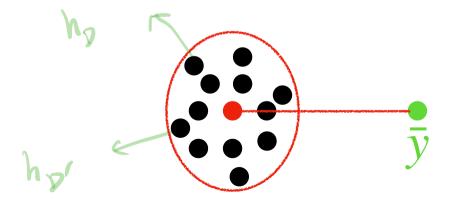
$$\overline{h}(x) = \underbrace{\mathbb{E}}_{\mathcal{D},x}(h_{\mathcal{D}}(x) - y)^{2}$$

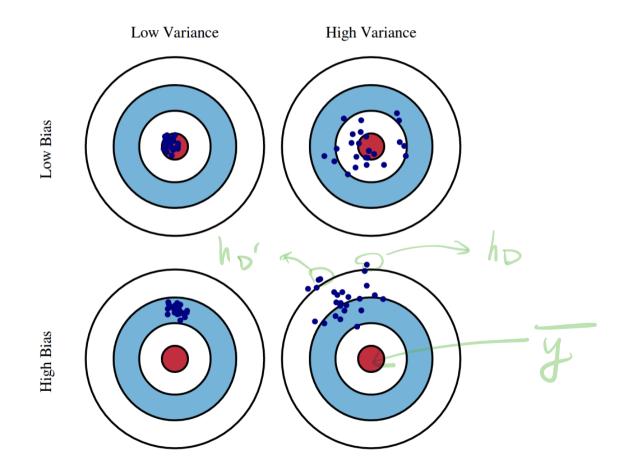
$$\underbrace{\mathbb{E}}_{\mathcal{D},x}(\bar{y}(x) - y)^{2}$$

Denote $h_{\mathcal{D}}$ as the ERM solution on dataset \mathcal{D} w/ squared loss $\ell(h, x, y) = (h(x) - y)^2$

What we have shown is the Bias-Variance decomposition:

$$\mathbb{E}_{\mathcal{D},x,y}(h_{\mathcal{D}}(x)-y)^{2} = \mathbb{E}_{\mathcal{D},x}(h_{\mathcal{D}}(x)-\bar{h}(x))^{2} + \mathbb{E}_{x}(\bar{h}(x)-\bar{y}(x))^{2} + \mathbb{E}_{x,y}(\bar{y}(x)-y)^{2}$$





Outline of Today

1. Bias & Variance tradeoff demo on Ridge Linear Regression

2. Derivation of Bias / Variance for Ridge LR

2. Model selection in practice (re-visit Cross Validation)

Let us consider the case where features are fixed, i.e., x_1, \ldots, x_n fixed (no randomness)

Let us consider the case where features are fixed, i.e., x_1, \ldots, x_n fixed (no randomness)

But
$$y_i \sim (w^{\star})^{\mathsf{T}} x_i + \epsilon_i, \ \epsilon_i \sim \mathcal{N}(0,1)$$

Let us consider the case where features are fixed, i.e., x_1, \ldots, x_n fixed (no randomness)

But
$$y_i \sim (w^{\star})^{\mathsf{T}} x_i + \epsilon_i, \, \epsilon_i \sim \mathcal{N}(0,1)$$

(This is called LR w/ fixed design)

Let us consider the case where features are fixed, i.e., x_1, \ldots, x_n fixed (no randomness)

But
$$y_i \sim (w^{\star})^{\top} x_i + \epsilon_i, \ \epsilon_i \sim \mathcal{N}(0,1)$$

(This is called LR w/ fixed design)

(So the only randomness of our dataset $\mathcal{D} = \{x_i, y_i\}$ is coming from the noises ϵ_i)

Ridge Linear Regression formulation

$$\hat{w} = \arg\min_{w} \sum_{i=1}^{n} (w^{\top} x_i - y_i)^2 + \lambda ||w||_2^2$$

Ridge Linear Regression formulation

$$\hat{w} = \arg\min_{w} \sum_{i=1}^{n} (w^{\mathsf{T}} x_i - y_i)^2 + \lambda ||w||_2^2$$

What we will show now:

Larger λ (model becomes "simpler") => larger bias, but smaller variance

Ridge Linear Regression formulation

$$\hat{w} = \arg\min_{w} \sum_{i=1}^{n} (w^{\mathsf{T}} x_i - y_i)^2 + \lambda ||w||_2^2$$

What we will show now:

Larger λ (model becomes "simpler") => larger bias, but smaller variance

(Q: think about the case where $\lambda \to \infty$, what happens to \hat{w} ?)

Demonstration for 2d ridge linear regression

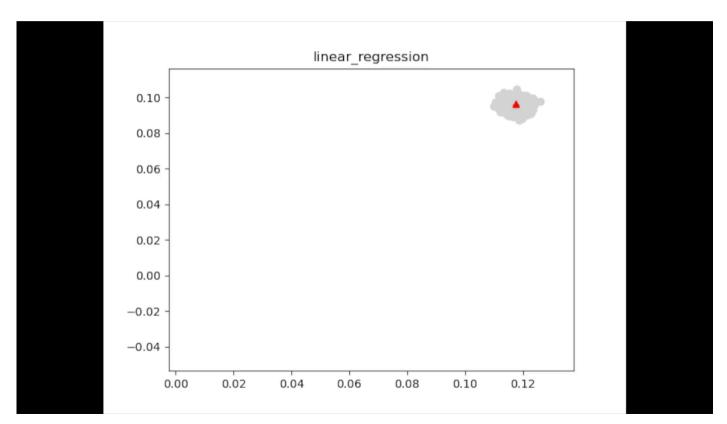
D= {x, y3

2. For a given λ , solve Ridge LR for each dataset, get $\hat{w}_1, \ldots, \hat{w}_{5000}$

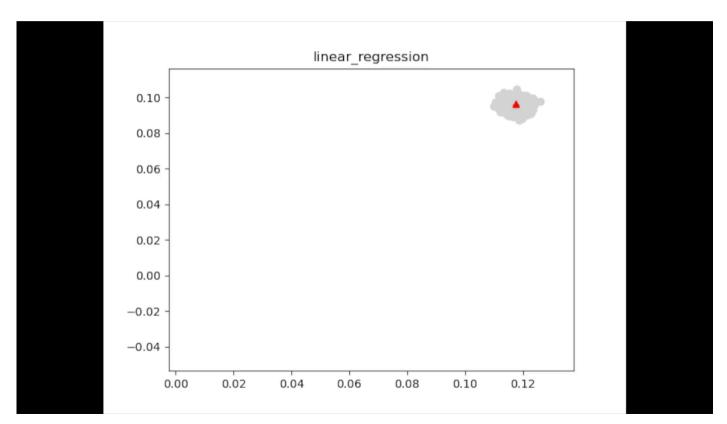
3. Estimate the mean
$$\bar{w} = \sum_{i} \hat{w}_{i} / 5000$$

4. Plot $\hat{w}_1, \ldots, \hat{w}_{5000}$, and mean \bar{w} , and the optimal w^*

We start with $\lambda = 0$, and gradually increase λ to $+\infty$:



We start with $\lambda = 0$, and gradually increase λ to $+\infty$:



Outline of Today

1. Bias & Variance tradeoff demo on Ridge Linear Regression

2. Derivation of Bias / Variance for Ridge LR

2. Model selection in practice (re-visit Cross Validation)

Derivation of Bias and Variance for Ridge Linear regression

Denote
$$X = [x_1, \dots, x_n] \in \mathbb{R}^{d \times n}, Y = [y_1, \dots, y_n]^\top \in \mathbb{R}^n, \epsilon = [\epsilon_1, \dots, \epsilon_n]^\top \in \mathbb{R}^n$$

Ridge LR in matrix / vector form:

Derivation of Bias and Variance for Ridge Linear regression

Denote
$$X = [x_1, \dots, x_n] \in \mathbb{R}^{d \times n}, Y = [y_1, \dots, y_n]^\top \in \mathbb{R}^n, \epsilon = [\epsilon_1, \dots, \epsilon_n]^\top \in \mathbb{R}^n$$

Ridge LR in matrix / vector form:

$$\hat{w} = \arg\min_{w} \|X^{\mathsf{T}}w - Y\|_{2}^{2} + \lambda \|w\|_{2}^{2}$$

Derivation of Bias and Variance for Ridge Linear regression

Denote
$$X = [x_1, \dots, x_n] \in \mathbb{R}^{d \times n}, Y = [y_1, \dots, y_n]^\top \in \mathbb{R}^n, \epsilon = [\epsilon_1, \dots, \epsilon_n]^\top \in \mathbb{R}^n$$

Ridge LR in matrix / vector form:

$$\hat{w} = \arg\min_{w} \|X^{\mathsf{T}}w - Y\|_{2}^{2} + \lambda \|w\|_{2}^{2}$$

Since
$$y_i = (w^*)^T x_i + \epsilon_i$$
 we have $Y = X^T w^* + \epsilon$

$$\hat{w} = (XX^{\top} + \lambda I)^{-1}XY = (XX^{\top} + \lambda I)^{-1}X(X^{\top}w^{\star} + \epsilon)$$

$$Y = X^{\top}w^{\star} + \xi$$

$$\hat{w} = (XX^{\top} + \lambda I)^{-1}XY = (XX^{\top} + \lambda I)^{-1}X(X^{\top}w^{\star} + \epsilon)$$
 Source of the randomness of \hat{w}

$$\hat{w} = (XX^{\top} + \lambda I)^{-1}XY = (XX^{\top} + \lambda I)^{-1}X(X^{\top}w^{\star} + \epsilon)$$
 Source of the randomness of Let us compute the average $\bar{w} := \mathbb{E}_{\epsilon}[\hat{w}]$:

$$\hat{w} = (XX^{\top} + \lambda I)^{-1}XY = (XX^{\top} + \lambda I)^{-1}X(X^{\top}w^{\star} + \epsilon)$$
 Source of the randomness of \hat{w} Let us compute the average $\bar{w} := \mathbb{E}_{\epsilon}[\hat{w}]$:

$$\mathbb{E}_{\epsilon}[\hat{w}] = (XX^{\top} + \lambda I)^{-1} X[X^{\top} w^{\star} + \mathbb{E}_{\epsilon}[\epsilon]]$$

$$\hat{w} = (XX^{\top} + \lambda I)^{-1}XY = (XX^{\top} + \lambda I)^{-1}X(X^{\top}w^{\star} + \epsilon)$$
Source of the randomness of Let us compute the average $\bar{w} := \mathbb{E}_{\epsilon}[\hat{w}]$:

$$\mathbb{E}_{\epsilon}[\hat{w}] = (XX^{\top} + \lambda I)^{-1}X[X^{\top}w^{\star} + \mathbb{E}_{\epsilon}[\epsilon]]$$
$$= (XX^{\top} + \lambda I)^{-1}XX^{\top}w^{\star}$$
$$\underbrace{=}_{=0}^{=0} (XX^{\top} + \lambda I)^{-1}XX^{\top}w^{\star}$$

Recall we have closed form solution for Ridge LR

$$\hat{w} = (XX^{\top} + \lambda I)^{-1}XY = (XX^{\top} + \lambda I)^{-1}X(X^{\top}w^{\star} + \epsilon)$$
Source of the randomness of Let us compute the average $\bar{w} := \mathbb{E}_{\epsilon}[\hat{w}]$:

$$\mathbb{E}_{\epsilon}[\hat{w}] = (XX^{\top} + \lambda I)^{-1}X[X^{\top}w^{\star} + \mathbb{E}_{\epsilon}[\epsilon]]$$

 $= (XX^{\top} + \lambda I)^{-1}XX^{\top}w^{\star}$

$$= (XX^{\top} + \lambda I)^{-1}(XX^{\top} + \lambda I - \lambda I)w^{\star}$$

$$\hat{w} = (XX^{\top} + \lambda I)^{-1}XY = (XX^{\top} + \lambda I)^{-1}X(X^{\top}w^{\star} + \epsilon)$$
Source of the randomness of Let us compute the average $\bar{w} := \mathbb{E}_{\epsilon}[\hat{w}]$:

$$\mathbb{E}_{\epsilon}[\hat{w}] = (XX^{\top} + \lambda I)^{-1}X[X^{\top}w^{\star} + \mathbb{E}_{\epsilon}[\epsilon]]$$

= $(XX^{\top} + \lambda I)^{-1}XX^{\top}w^{\star}$
= $(XX^{\top} + \lambda I)^{-1}(XX^{\top} + \lambda I - \lambda I)w^{\star} = w^{\star} - \lambda(XX^{\top} + \lambda I)^{-1}w^{\star}$

$$\bar{w} = \mathbb{E}[\hat{w}] = w^* - \lambda (XX^\top + \lambda)^{-1} \lambda w^*$$

Bias term:
$$\sum_{i=1}^n \left((\bar{w} - w^*)^\top x_i \right)^2$$
$$\bar{w} - \omega^* = -\lambda (xx^\top + \lambda \mathbf{I})^\top \lambda w^*$$

$$\bar{w} = \mathbb{E}[\hat{w}] = w^{\star} - \lambda (XX^{\top} + \lambda)^{-1} \lambda w^{\star}$$

Bias term:
$$\sum_{i=1}^{n} \left((\bar{w} - w^{\star})^{\mathsf{T}} x_{i} \right)^{2}$$
$$= \sum_{i=1}^{n} \left((\lambda (XX^{\mathsf{T}} + \lambda)^{-1} w^{\star})^{\mathsf{T}} x_{i} \right)^{2}$$
$$= \sum_{i=1}^{n} (\lambda (XX^{\mathsf{T}} + \lambda)^{-1} w^{\star})^{\mathsf{T}} x_{i} \right)^{2}$$
$$= \sum_{i=1}^{n} (\lambda (XX^{\mathsf{T}} + \lambda)^{-1} w^{\star})^{\mathsf{T}} x_{i} \right)^{2}$$
$$= \sum_{i=1}^{n} (\lambda (XX^{\mathsf{T}} + \lambda)^{-1} w^{\star})^{\mathsf{T}} x_{i} \right)^{2}$$

$$\bar{w} = \mathbb{E}[\hat{w}] = w^{\star} - \lambda (XX^{\top} + \lambda)^{-1} \lambda w^{\star}$$

Bias term:
$$\sum_{i=1}^{n} \left((\bar{w} - w^{\star})^{\mathsf{T}} x_i \right)^2$$
$$= \sum_{i=1}^{n} \left((\lambda (XX^{\mathsf{T}} + \lambda)^{-1} w^{\star})^{\mathsf{T}} x_i \right)^2$$

 $= \lambda^2 (w^{\star})^{\top} (XX^{\top} + \lambda I)^{-1} XX^{\top} (XX^{\top} + \lambda I)^{-1} w^{\star}$

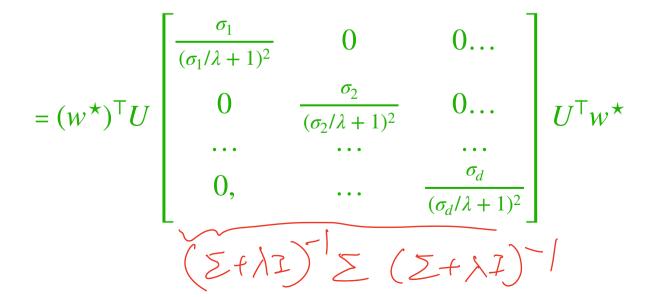
Bias = $\lambda^2 (w^{\star})^{\top} (XX^{\top} + \lambda I)^{-1} XX^{\top} (XX^{\top} + \lambda I)^{-1} w^{\star}$

Bias = $\lambda^2 (w^{\star})^{\top} (XX^{\top} + \lambda I)^{-1} XX^{\top} (XX^{\top} + \lambda I)^{-1} w^{\star}$ Eigendecomposition on $XX^{\top} = U\Sigma U^{\top}$ $U(z+\lambda I) (U (\chi Z(U (\chi (z+\lambda Z) (W))) = (U_1 (U_2) (U_a)) (U_1 (U_2) (U_2) (U_1 (U_2) (U_2) (U_2) (U_2) (U_2) (U_2)) (U_1 (U_2) (U_2$ $= \lambda(w^{*}) U(z+\lambda I) = (z+\lambda I) = U(z+\lambda I) u^{*}$

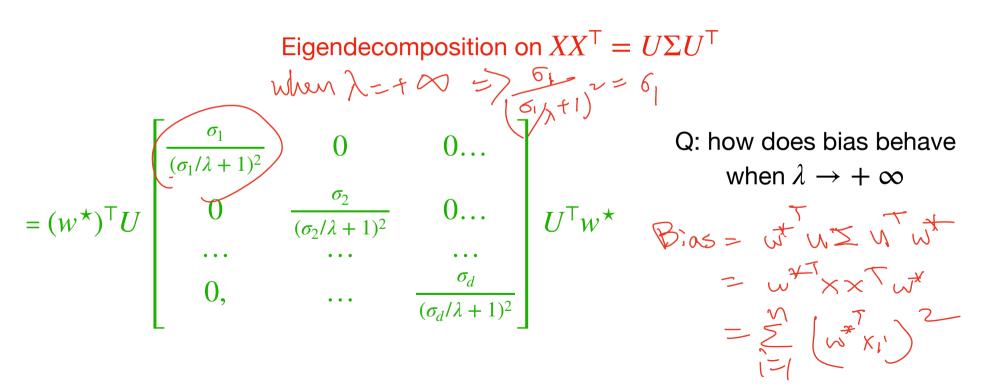
<u>َ</u> ک

Bias = $\lambda^2 (w^{\star})^{\top} (XX^{\top} + \lambda I)^{-1} XX^{\top} (XX^{\top} + \lambda I)^{-1} w^{\star}$

Eigendecomposition on $XX^{\top} = U\Sigma U^{\top}$

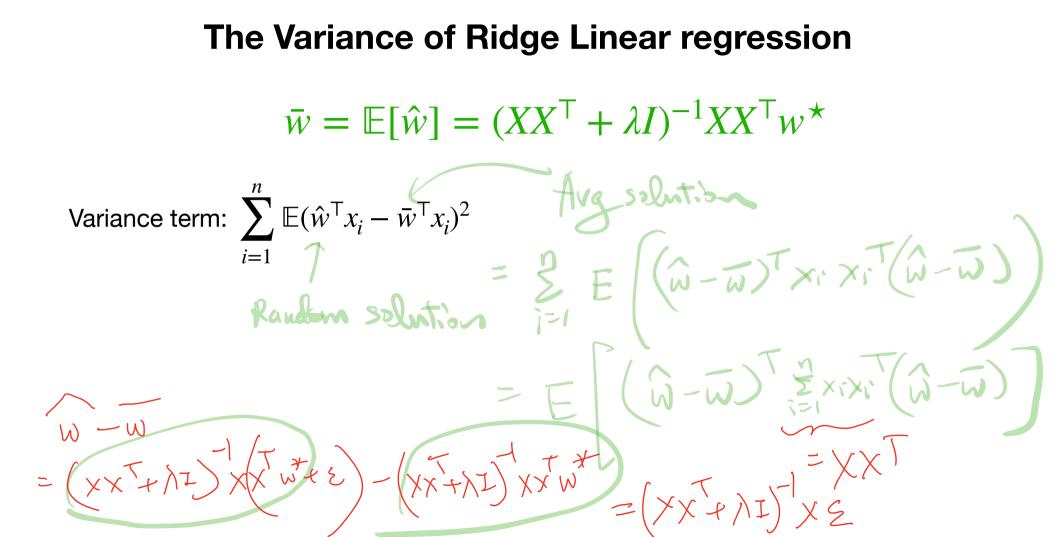


Bias = $\lambda^2 (w^{\star})^{\top} (XX^{\top} + \lambda I)^{-1} XX^{\top} (XX^{\top} + \lambda I)^{-1} w^{\star}$



Bias = $\lambda^2 (w^{\star})^{\top} (XX^{\top} + \lambda I)^{-1} XX^{\top} (XX^{\top} + \lambda I)^{-1} w^{\star}$

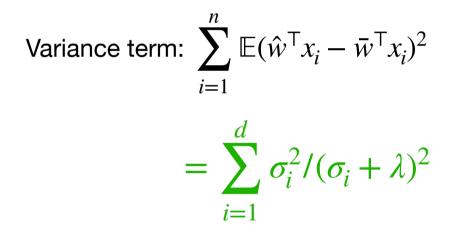
Eigendecomposition on and σ_1 σ_1 σ_2 σ_1 σ_2 σ_2 σ_1 $U^{\mathsf{T}}_{\mathsf{T}}$ $0 \quad \frac{\sigma_2}{(\sigma_2/\lambda+1)^2} \quad 0 \dots \qquad U^{\mathsf{T}}_{\mathsf{T}}$ Eigendecomposition on $XX^{\top} = U\Sigma U^{\top}$ Q: how does bias behave when $\lambda \to +\infty$ $=(w^{\star})^{\mathsf{T}}U$ $U^{\mathsf{T}}w^{\star}$ σ_{d} Q: how does bias behave $(\sigma_d/\lambda + 1)^2$ when $\lambda \to 0$ when 2-277



 $\bar{w} = \mathbb{E}[\hat{w}] = (XX^{\top} + \lambda I)^{-1}XX^{\top}w^{\star}$

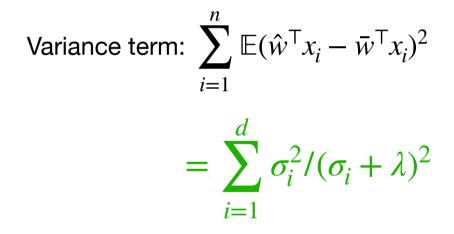
Variance term:
$$\sum_{i=1}^{n} \mathbb{E}(\hat{w}^{\mathsf{T}}x_{i} - \bar{w}^{\mathsf{T}}x_{i})^{2}$$
$$= \sum_{i=1}^{d} \sigma_{i}^{2} / (\sigma_{i} + \lambda)^{2}$$

 $\bar{w} = \mathbb{E}[\hat{w}] = (XX^{\top} + \lambda I)^{-1}XX^{\top}w^{\star}$



(Optional — tedious but basic computation, see note)

 $\bar{w} = \mathbb{E}[\hat{w}] = (XX^{\top} + \lambda I)^{-1}XX^{\top}w^{\star}$



(Optional – tedious but basic computation, see note)

Q: how does Var behave when $\lambda \to +\infty$

Q: how does Var behave

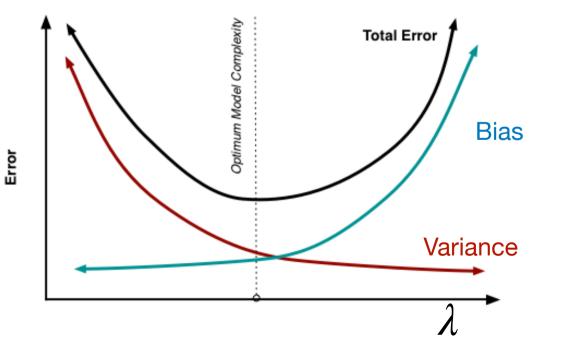
when
$$\lambda \to 0$$

 $V = \sum_{j=1}^{2} \frac{\sigma_{j}^{2}}{\sigma_{j}^{2}} = 0$

Ridge Linear regression

Tuning λ allows us to control the generalization error of Ridge LR solution:

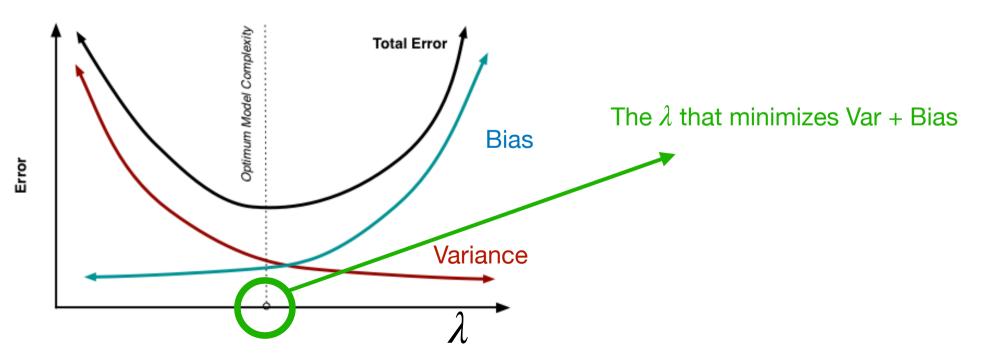
 $\mathbb{E}(\hat{w}^{\mathsf{T}}x - y)^2 = \text{Variance} + \text{Bias} + \text{Inherent noise}$



Ridge Linear regression

Tuning λ allows us to control the generalization error of Ridge LR solution:

 $\mathbb{E}(\hat{w}^{\mathsf{T}}x - y)^2 = \text{Variance} + \text{Bias} + \text{Inherent noise}$



Outline of Today

1. Bias & Variance tradeoff demo on Ridge Linear Regression

2. Derivation of Bias / Variance for Ridge LR

2. Model selection in practice (re-visit Cross Validation)

Examples:

1. Select the right order of polynomials for regression

Examples:

1. Select the right order of polynomials for regression

2. Select the right ridge regularization weight λ

Examples:

1. Select the right order of polynomials for regression

2. Select the right ridge regularization weight λ

3. Select the right penalty for slack variables in soft SVM (i.e., the C parameter)

Examples:

1. Select the right order of polynomials for regression

3. Select the right penalty for slack variables in soft SVM (i.e., the C parameter)

Cross Validation revisit:

Split the data into K folds

For i = 1 to K:

Cross Validation revisit:

Split the data into K folds

For i = 1 to K:

```
\hat{w}_{\tau} = \text{Ridge LR}(\mathcal{D}_{-i}, \lambda),
```

Di as the data set the leeves on t fold i

Cross Validation revisit:

Split the data into K folds

For i = 1 to K:

$$\begin{split} \hat{w}_{\underline{k}}^{*} &= \operatorname{Ridge} \operatorname{LR}(\mathcal{D}_{-i}, \lambda), \\ \epsilon_{vad;k} &= \sum_{\substack{x, y \in \mathcal{D}_{i} \\ \forall i}} (\hat{w}_{i}^{\mathsf{T}} x - y)^{2} / |\mathcal{D}_{i}| \\ &= \underbrace{\operatorname{Ridge} \operatorname{LR}(\mathcal{D}_{-i}, \lambda), \\ (\hat{w}_{i}^{\mathsf{T}} x - y)^{2} / |\mathcal{D}_{i}| \\ &= \underbrace{\operatorname{Ridge} \operatorname{LR}(\mathcal{D}_{-i}, \lambda), \\ &= \underbrace{\operatorname{Ridge} \operatorname{Ridge} \operatorname{Ridge}$$

Cross Validation revisit:

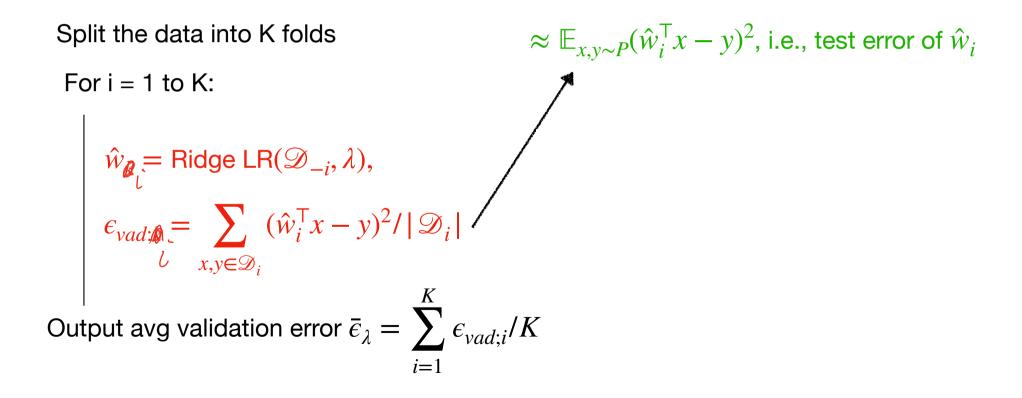
Split the data into K folds

For i = 1 to K:

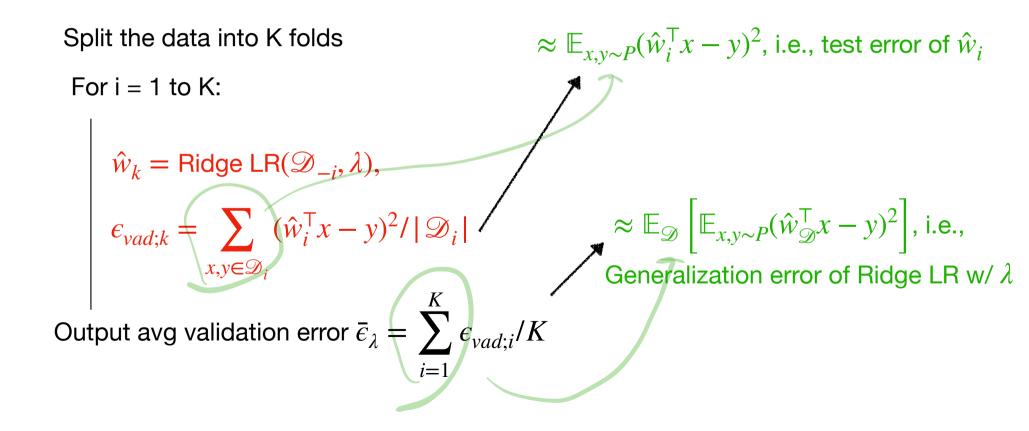
$$\hat{w}_{k} = \operatorname{Ridge} \operatorname{LR}(\mathscr{D}_{-i}, \lambda),$$

$$\epsilon_{vad;k} = \sum_{x,y \in \mathscr{D}_{i}} (\hat{w}_{i}^{\mathsf{T}}x - y)^{2} / |\mathscr{D}_{i}|$$
Output avg validation error $\bar{e}_{\lambda} = \sum_{i=1}^{K} \epsilon_{vad;i} / K$

Cross Validation revisit:



Cross Validation revisit:



By numerating a set of possible $\lambda \in \mathbb{R}^+$, we select the one that has the smallest Cross-Valid error:

By numerating a set of possible $\lambda \in \mathbb{R}^+$, we select the one that has the smallest Cross-Valid error:

For λ in [1e-5, 1e-4, ... 1e4,1e5]:

By numerating a set of possible $\lambda \in \mathbb{R}^+$, we select the one that has the smallest Cross-Valid error:

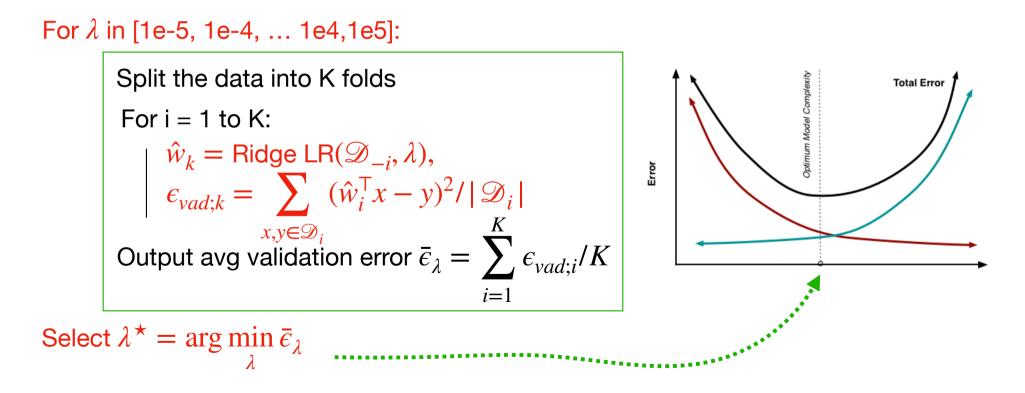
For λ in [1e-5, 1e-4, ... 1e4,1e5]: Split the data into K folds For i = 1 to K: $\hat{w}_k = \text{Ridge LR}(\mathcal{D}_{-i}, \lambda),$ $\epsilon_{vad;k} = \sum_{x,y \in \mathcal{D}_i} (\hat{w}_i^{\mathsf{T}} x - y)^2 / |\mathcal{D}_i|$ Output avg validation error $\bar{\epsilon}_{\lambda} = \sum_{i=1}^{K} \epsilon_{vad;i} / K$

By numerating a set of possible $\lambda \in \mathbb{R}^+$, we select the one that has the smallest Cross-Valid error:

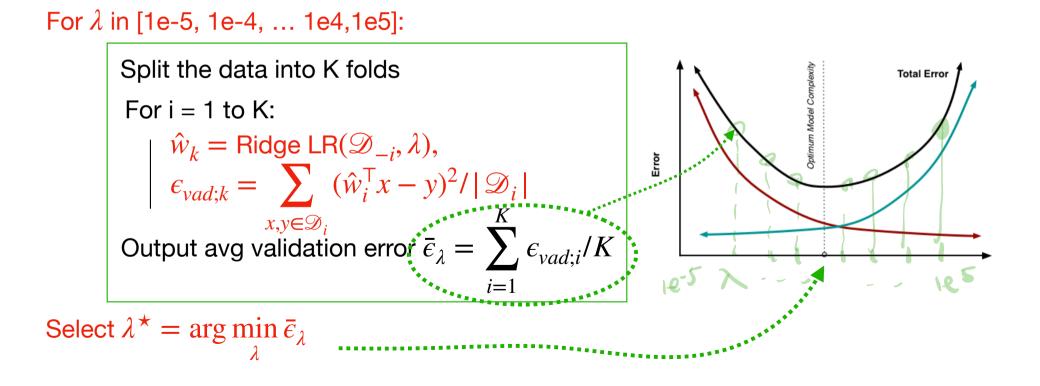
For λ in [1e-5, 1e-4, ... 1e4,1e5]: Split the data into K folds For i = 1 to K: $\hat{w}_k = \text{Ridge LR}(\mathcal{D}_{-i}, \lambda),$ $\epsilon_{vad;k} = \sum_{x,y \in \mathcal{D}_i} (\hat{w}_i^{\mathsf{T}} x - y)^2 / |\mathcal{D}_i|$ Output avg validation error $\bar{\epsilon}_{\lambda} = \sum_{i=1}^K \epsilon_{vad;i} / K$

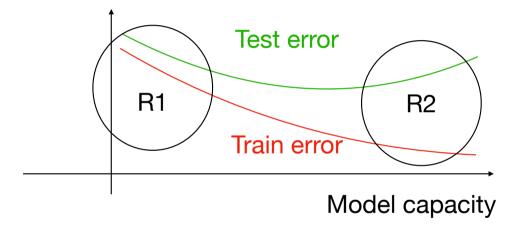
Select $\lambda^{\star} = \arg\min_{\lambda} \bar{e}_{\lambda}$

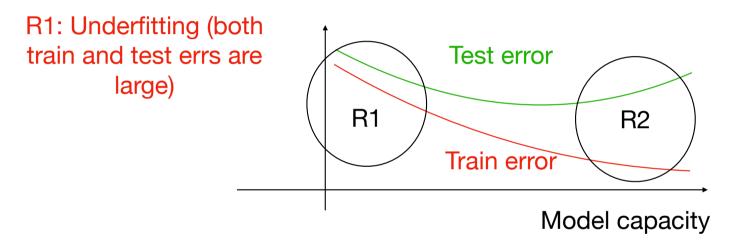
By numerating a set of possible $\lambda \in \mathbb{R}^+$, we select the one that has the smallest Cross-Valid error:

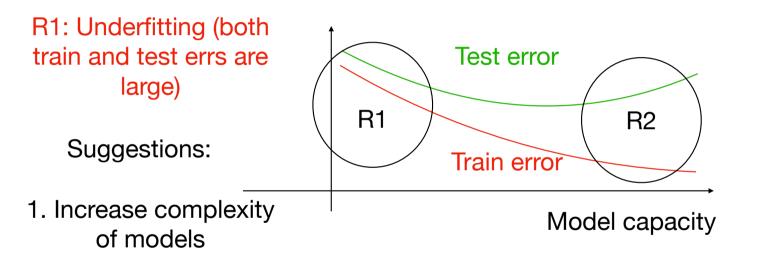


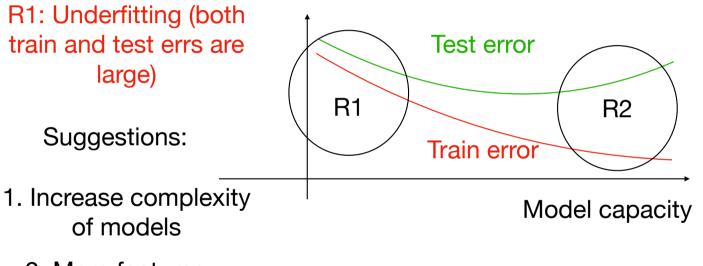
By numerating a set of possible $\lambda \in \mathbb{R}^+$, we select the one that has the smallest Cross-Valid error:



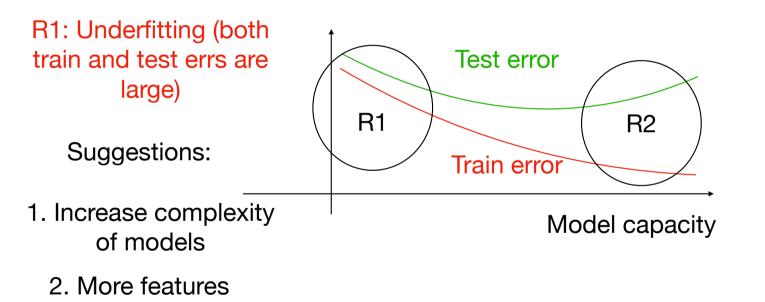




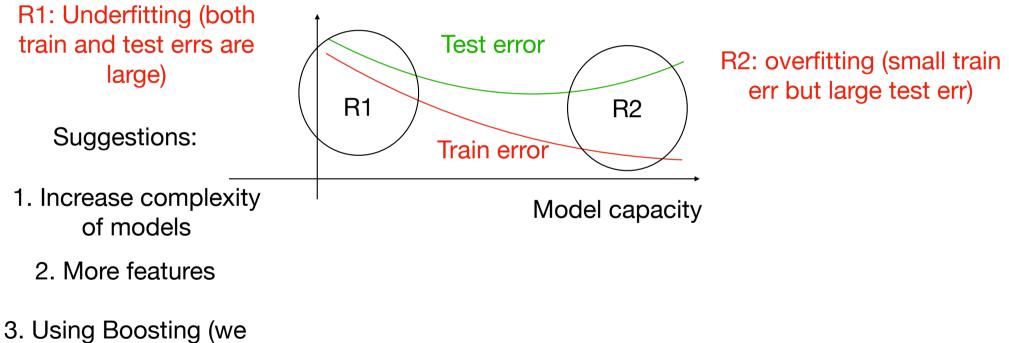




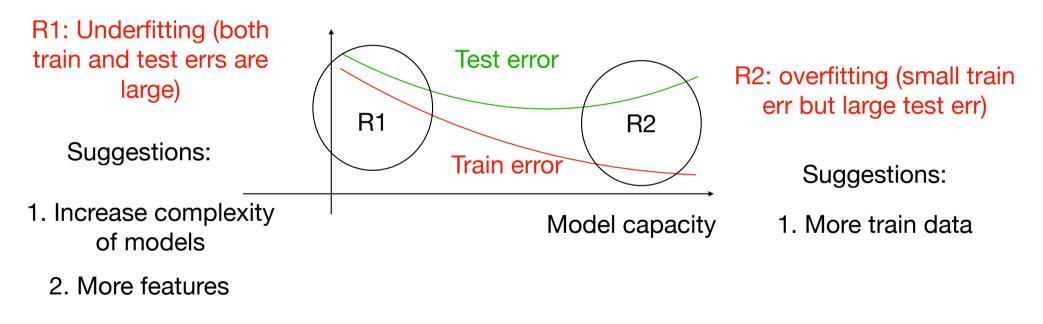
2. More features



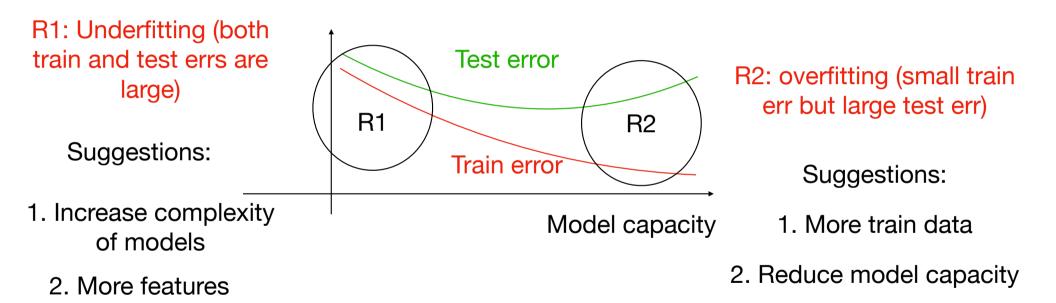
3. Using Boosting (we will see it later)



will see it later)



3. Using Boosting (we will see it later)



3. Using Boosting (we will see it later)

