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Announcements

HW5 and P5 are coming out
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Ridge Linear regression w/ fixed features and Gaussian noises

Let us consider the case where features are fixed, i.e.,  fixed (no randomness)x1, …, xn

But yi ∼ (w⋆)⊤xi + ϵi, ϵi ∼ '(0,1)

(This is called LR w/ fixed design)

(So the only randomness of our dataset  is coming from the noises )! = {xi, yi} ϵi
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Ridge Linear regression

Ridge Linear Regression formulation

ŵ = arg min
w

n

∑
i=1

(w⊤xi − yi)2 + λ∥w∥2
2

What we will show now:

Larger  (model becomes “simpler”) => larger bias, but smaller varianceλ

(Q: think about the case where , what happens to ?)λ → ∞ ŵ



Ridge Linear regression

Demonstration for 2d ridge linear regression

1. We create 5000 datasets: ,!1, !2, …, !5000

2. For a given , solve Ridge LR for each dataset, get λ ŵ1, …, ŵ5000

3. Estimate the mean w̄ = ∑
i

ŵi/5000

4. Plot , and mean , and the optimal ŵ1, …, ŵ5000 w̄ w⋆
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Denote X = [x1, …, xn] ∈ ℝd×n, Y = [y1, …, yn]⊤ ∈ ℝn, ϵ = [ϵ1, …, ϵn]⊤ ∈ ℝn

ŵ = arg min
w

∥X⊤w − Y∥2
2 + λ∥w∥2

2

Since yi = (w⋆)⊤xi + ϵi we have Y = X⊤w⋆ + ϵ

Ridge LR in matrix / vector form:
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ŵ = (XX⊤ + λI)−1XY = (XX⊤ + λI)−1X(X⊤w⋆ + ϵ) Source of the 
randomness of 
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w̄ = #[ŵ] = (XX⊤ + λI)−1XX⊤w⋆

Variance term: 
n

∑
i=1

#(ŵ⊤xi − w̄⊤xi)2

=
d

∑
i=1

σ2
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Q: how does Var behave 
when λ → 0(Optional — tedious but basic 

computation, see note)
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#(ŵ⊤x − y)2 = Variance + Bias + Inherent noise

λ
Variance 

Bias 
The  that minimizes Var + Biasλ
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!x − y)2]
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ŵk = Ridge LR(!−i, λ),
ϵvad;k = ∑

x,y∈!i

(ŵ⊤
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Practical Suggestions for combating over/under fitting

Model capacity

Train error

Test error
R1: Underfitting (both 
train and test errs are 

large) R2: overfitting (small train 
err but large test err)R1 R2

Suggestions:

1. More train data

2. Reduce model capacity

3. Using Bagging 

(we will see it later)

Suggestions:

1. Increase complexity 
of models

2. More features 

3. Using Boosting (we 
will see it later)


