
Bias-Variance Tradeoff
& Model Selection

Announcements

HW5 and P5 are coming out

Recap on Bias-Variance Tradeoff

Denote as the ERM solution on dataset w/ squared loss h! ! ℓ(h, x, y) = (h(x) − y)2

Recap on Bias-Variance Tradeoff

Denote as the ERM solution on dataset w/ squared loss h! ! ℓ(h, x, y) = (h(x) − y)2

What we have shown is the Bias-Variance decomposition:

#!,x,y(h!(x) − y)2 = #!,x(h!(x) − h̄(x))2 + #x(h̄(x) − ȳ(x))2 + #x,y(ȳ(x) − y)2

Recap on Bias-Variance Tradeoff

Denote as the ERM solution on dataset w/ squared loss h! ! ℓ(h, x, y) = (h(x) − y)2

What we have shown is the Bias-Variance decomposition:

#!,x,y(h!(x) − y)2 = #!,x(h!(x) − h̄(x))2 + #x(h̄(x) − ȳ(x))2 + #x,y(ȳ(x) − y)2

ȳ

Recap on Bias-Variance Tradeoff

Outline of Today

1. Bias & Variance tradeoff demo on Ridge Linear Regression

2. Model selection in practice (re-visit Cross Validation)

2. Derivation of Bias / Variance for Ridge LR

Ridge Linear regression w/ fixed features and Gaussian noises

Let us consider the case where features are fixed, i.e., fixed (no randomness)x1, …, xn

Ridge Linear regression w/ fixed features and Gaussian noises

Let us consider the case where features are fixed, i.e., fixed (no randomness)x1, …, xn

But yi ∼ (w⋆)⊤xi + ϵi, ϵi ∼ '(0,1)

Ridge Linear regression w/ fixed features and Gaussian noises

Let us consider the case where features are fixed, i.e., fixed (no randomness)x1, …, xn

But yi ∼ (w⋆)⊤xi + ϵi, ϵi ∼ '(0,1)

(This is called LR w/ fixed design)

Ridge Linear regression w/ fixed features and Gaussian noises

Let us consider the case where features are fixed, i.e., fixed (no randomness)x1, …, xn

But yi ∼ (w⋆)⊤xi + ϵi, ϵi ∼ '(0,1)

(This is called LR w/ fixed design)

(So the only randomness of our dataset is coming from the noises)! = {xi, yi} ϵi

Ridge Linear regression

Ridge Linear Regression formulation

ŵ = arg min
w

n

∑
i=1

(w⊤xi − yi)2 + λ∥w∥2
2

Ridge Linear regression

Ridge Linear Regression formulation

ŵ = arg min
w

n

∑
i=1

(w⊤xi − yi)2 + λ∥w∥2
2

What we will show now:

Larger (model becomes “simpler”) => larger bias, but smaller varianceλ

Ridge Linear regression

Ridge Linear Regression formulation

ŵ = arg min
w

n

∑
i=1

(w⊤xi − yi)2 + λ∥w∥2
2

What we will show now:

Larger (model becomes “simpler”) => larger bias, but smaller varianceλ

(Q: think about the case where , what happens to ?)λ → ∞ ŵ

Ridge Linear regression

Demonstration for 2d ridge linear regression

1. We create 5000 datasets: ,!1, !2, …, !5000

2. For a given , solve Ridge LR for each dataset, get λ ŵ1, …, ŵ5000

3. Estimate the mean w̄ = ∑
i

ŵi/5000

4. Plot , and mean , and the optimal ŵ1, …, ŵ5000 w̄ w⋆

Ridge Linear regression
We start with , and gradually increase to :λ = 0 λ +∞

Ridge Linear regression
We start with , and gradually increase to :λ = 0 λ +∞

Outline of Today

1. Bias & Variance tradeoff demo on Ridge Linear Regression

2. Model selection in practice (re-visit Cross Validation)

2. Derivation of Bias / Variance for Ridge LR

Derivation of Bias and Variance for Ridge Linear regression

Denote X = [x1, …, xn] ∈ ℝd×n, Y = [y1, …, yn]⊤ ∈ ℝn, ϵ = [ϵ1, …, ϵn]⊤ ∈ ℝn

Ridge LR in matrix / vector form:

Derivation of Bias and Variance for Ridge Linear regression

Denote X = [x1, …, xn] ∈ ℝd×n, Y = [y1, …, yn]⊤ ∈ ℝn, ϵ = [ϵ1, …, ϵn]⊤ ∈ ℝn

ŵ = arg min
w

∥X⊤w − Y∥2
2 + λ∥w∥2

2

Ridge LR in matrix / vector form:

Derivation of Bias and Variance for Ridge Linear regression

Denote X = [x1, …, xn] ∈ ℝd×n, Y = [y1, …, yn]⊤ ∈ ℝn, ϵ = [ϵ1, …, ϵn]⊤ ∈ ℝn

ŵ = arg min
w

∥X⊤w − Y∥2
2 + λ∥w∥2

2

Since yi = (w⋆)⊤xi + ϵi we have Y = X⊤w⋆ + ϵ

Ridge LR in matrix / vector form:

The Expectation of the Ridge LR solution

Recall we have closed form solution for Ridge LR

ŵ = (XX⊤ + λI)−1XY = (XX⊤ + λI)−1X(X⊤w⋆ + ϵ)

The Expectation of the Ridge LR solution

Recall we have closed form solution for Ridge LR

ŵ = (XX⊤ + λI)−1XY = (XX⊤ + λI)−1X(X⊤w⋆ + ϵ) Source of the
randomness of

ŵ

The Expectation of the Ridge LR solution

Recall we have closed form solution for Ridge LR

ŵ = (XX⊤ + λI)−1XY = (XX⊤ + λI)−1X(X⊤w⋆ + ϵ) Source of the
randomness of

ŵLet us compute the average :w̄ := #ϵ[ŵ]

The Expectation of the Ridge LR solution

Recall we have closed form solution for Ridge LR

ŵ = (XX⊤ + λI)−1XY = (XX⊤ + λI)−1X(X⊤w⋆ + ϵ) Source of the
randomness of

ŵLet us compute the average :w̄ := #ϵ[ŵ]

#ϵ[ŵ] = (XX⊤ + λI)−1X[X⊤w⋆ + #ϵ[ϵ]]

The Expectation of the Ridge LR solution

Recall we have closed form solution for Ridge LR

ŵ = (XX⊤ + λI)−1XY = (XX⊤ + λI)−1X(X⊤w⋆ + ϵ) Source of the
randomness of

ŵLet us compute the average :w̄ := #ϵ[ŵ]

#ϵ[ŵ] = (XX⊤ + λI)−1X[X⊤w⋆ + #ϵ[ϵ]]

= (XX⊤ + λI)−1XX⊤w⋆

The Expectation of the Ridge LR solution

Recall we have closed form solution for Ridge LR

ŵ = (XX⊤ + λI)−1XY = (XX⊤ + λI)−1X(X⊤w⋆ + ϵ) Source of the
randomness of

ŵLet us compute the average :w̄ := #ϵ[ŵ]

#ϵ[ŵ] = (XX⊤ + λI)−1X[X⊤w⋆ + #ϵ[ϵ]]

= (XX⊤ + λI)−1XX⊤w⋆

= (XX⊤ + λI)−1(XX⊤ + λI − λI)w⋆

The Expectation of the Ridge LR solution

Recall we have closed form solution for Ridge LR

ŵ = (XX⊤ + λI)−1XY = (XX⊤ + λI)−1X(X⊤w⋆ + ϵ) Source of the
randomness of

ŵLet us compute the average :w̄ := #ϵ[ŵ]

#ϵ[ŵ] = (XX⊤ + λI)−1X[X⊤w⋆ + #ϵ[ϵ]]

= (XX⊤ + λI)−1XX⊤w⋆

= (XX⊤ + λI)−1(XX⊤ + λI − λI)w⋆ = w⋆ − λ(XX⊤ + λI)−1w⋆

The Bias of Ridge Linear regression

w̄ = #[ŵ] = w⋆ − λ(XX⊤ + λ)−1λw⋆

Bias term:
n

∑
i=1

((w̄ − w⋆)⊤xi)2

The Bias of Ridge Linear regression

w̄ = #[ŵ] = w⋆ − λ(XX⊤ + λ)−1λw⋆

Bias term:
n

∑
i=1

((w̄ − w⋆)⊤xi)2

=
n

∑
i=1

((λ(XX⊤ + λ)−1w⋆)⊤xi)2

The Bias of Ridge Linear regression

w̄ = #[ŵ] = w⋆ − λ(XX⊤ + λ)−1λw⋆

Bias term:
n

∑
i=1

((w̄ − w⋆)⊤xi)2

=
n

∑
i=1

((λ(XX⊤ + λ)−1w⋆)⊤xi)2

= λ2(w⋆)⊤(XX⊤ + λI)−1XX⊤(XX⊤ + λI)−1w⋆

Bias = λ2(w⋆)⊤(XX⊤ + λI)−1XX⊤(XX⊤ + λI)−1w⋆

The Bias of Ridge Linear regression

Bias = λ2(w⋆)⊤(XX⊤ + λI)−1XX⊤(XX⊤ + λI)−1w⋆

Eigendecomposition on XX⊤ = UΣU⊤

The Bias of Ridge Linear regression

Bias = λ2(w⋆)⊤(XX⊤ + λI)−1XX⊤(XX⊤ + λI)−1w⋆

Eigendecomposition on XX⊤ = UΣU⊤

= (w⋆)⊤U

σ1

(σ1/λ + 1)2 0 0…

0 σ2

(σ2/λ + 1)2 0…
… … …
0, … σd

(σd /λ + 1)2

U⊤w⋆

The Bias of Ridge Linear regression

Bias = λ2(w⋆)⊤(XX⊤ + λI)−1XX⊤(XX⊤ + λI)−1w⋆

Eigendecomposition on XX⊤ = UΣU⊤

= (w⋆)⊤U

σ1

(σ1/λ + 1)2 0 0…

0 σ2

(σ2/λ + 1)2 0…
… … …
0, … σd

(σd /λ + 1)2

U⊤w⋆

Q: how does bias behave
when λ → + ∞

The Bias of Ridge Linear regression

Bias = λ2(w⋆)⊤(XX⊤ + λI)−1XX⊤(XX⊤ + λI)−1w⋆

Eigendecomposition on XX⊤ = UΣU⊤

= (w⋆)⊤U

σ1

(σ1/λ + 1)2 0 0…

0 σ2

(σ2/λ + 1)2 0…
… … …
0, … σd

(σd /λ + 1)2

U⊤w⋆

Q: how does bias behave
when λ → + ∞

Q: how does bias behave
when λ → 0

The Bias of Ridge Linear regression

The Variance of Ridge Linear regression

w̄ = #[ŵ] = (XX⊤ + λI)−1XX⊤w⋆

The Variance of Ridge Linear regression

w̄ = #[ŵ] = (XX⊤ + λI)−1XX⊤w⋆

Variance term:
n

∑
i=1

#(ŵ⊤xi − w̄⊤xi)2

The Variance of Ridge Linear regression

w̄ = #[ŵ] = (XX⊤ + λI)−1XX⊤w⋆

Variance term:
n

∑
i=1

#(ŵ⊤xi − w̄⊤xi)2

=
d

∑
i=1

σ2
i /(σi + λ)2

The Variance of Ridge Linear regression

w̄ = #[ŵ] = (XX⊤ + λI)−1XX⊤w⋆

Variance term:
n

∑
i=1

#(ŵ⊤xi − w̄⊤xi)2

=
d

∑
i=1

σ2
i /(σi + λ)2

(Optional — tedious but basic
computation, see note)

The Variance of Ridge Linear regression

w̄ = #[ŵ] = (XX⊤ + λI)−1XX⊤w⋆

Variance term:
n

∑
i=1

#(ŵ⊤xi − w̄⊤xi)2

=
d

∑
i=1

σ2
i /(σi + λ)2

Q: how does Var behave
when λ → + ∞

Q: how does Var behave
when λ → 0(Optional — tedious but basic

computation, see note)

Ridge Linear regression
Tuning allows us to control the generalization error of Ridge LR solution:λ

#(ŵ⊤x − y)2 = Variance + Bias + Inherent noise

λ
Variance

Bias

Ridge Linear regression
Tuning allows us to control the generalization error of Ridge LR solution:λ

#(ŵ⊤x − y)2 = Variance + Bias + Inherent noise

λ
Variance

Bias
The that minimizes Var + Biasλ

Outline of Today

1. Bias & Variance tradeoff demo on Ridge Linear Regression

2. Model selection in practice (re-visit Cross Validation)

2. Derivation of Bias / Variance for Ridge LR

How to select the best model from data

Examples:

1. Select the right order of polynomials for regression

How to select the best model from data

Examples:

1. Select the right order of polynomials for regression

2. Select the right ridge regularization weight λ

How to select the best model from data

Examples:

1. Select the right order of polynomials for regression

2. Select the right ridge regularization weight λ

3. Select the right penalty for slack variables in soft SVM (i.e., the C parameter)

How to select the best model from data

Examples:

1. Select the right order of polynomials for regression

2. Select the right ridge regularization weight λ

3. Select the right penalty for slack variables in soft SVM (i.e., the C parameter)

Select the right for Ridge LRλ
Cross Validation revisit:

Split the data into K folds

For i = 1 to K:

Select the right for Ridge LRλ
Cross Validation revisit:

Split the data into K folds

For i = 1 to K:

ŵk = Ridge LR(!−i, λ),

Select the right for Ridge LRλ
Cross Validation revisit:

Split the data into K folds

For i = 1 to K:

ŵk = Ridge LR(!−i, λ),

ϵvad;k = ∑
x,y∈!i

(ŵ⊤
i x − y)2/ |!i |

Select the right for Ridge LRλ
Cross Validation revisit:

Split the data into K folds

For i = 1 to K:

ŵk = Ridge LR(!−i, λ),

ϵvad;k = ∑
x,y∈!i

(ŵ⊤
i x − y)2/ |!i |

Output avg validation error ϵ̄λ =
K

∑
i=1

ϵvad;i/K

Select the right for Ridge LRλ
Cross Validation revisit:

Split the data into K folds

For i = 1 to K:

ŵk = Ridge LR(!−i, λ),

ϵvad;k = ∑
x,y∈!i

(ŵ⊤
i x − y)2/ |!i |

Output avg validation error ϵ̄λ =
K

∑
i=1

ϵvad;i/K

, i.e., test error of ≈ #x,y∼P(ŵ⊤
i x − y)2 ŵi

Select the right for Ridge LRλ
Cross Validation revisit:

Split the data into K folds

For i = 1 to K:

ŵk = Ridge LR(!−i, λ),

ϵvad;k = ∑
x,y∈!i

(ŵ⊤
i x − y)2/ |!i |

Output avg validation error ϵ̄λ =
K

∑
i=1

ϵvad;i/K

, i.e., test error of ≈ #x,y∼P(ŵ⊤
i x − y)2 ŵi

, i.e.,

Generalization error of Ridge LR w/

≈ #! [#x,y∼P(ŵ⊤
!x − y)2]

λ

Select the right for Ridge LRλ
By numerating a set of possible , we select the one that has the

smallest Cross-Valid error:
λ ∈ ℝ+

Select the right for Ridge LRλ
By numerating a set of possible , we select the one that has the

smallest Cross-Valid error:
λ ∈ ℝ+

For in [1e-5, 1e-4, … 1e4,1e5]:λ

Select the right for Ridge LRλ
By numerating a set of possible , we select the one that has the

smallest Cross-Valid error:
λ ∈ ℝ+

Split the data into K folds
For i = 1 to K:

ŵk = Ridge LR(!−i, λ),
ϵvad;k = ∑

x,y∈!i

(ŵ⊤
i x − y)2/ |!i |

Output avg validation error ϵ̄λ =
K

∑
i=1

ϵvad;i/K

For in [1e-5, 1e-4, … 1e4,1e5]:λ

Select the right for Ridge LRλ
By numerating a set of possible , we select the one that has the

smallest Cross-Valid error:
λ ∈ ℝ+

Split the data into K folds
For i = 1 to K:

ŵk = Ridge LR(!−i, λ),
ϵvad;k = ∑

x,y∈!i

(ŵ⊤
i x − y)2/ |!i |

Output avg validation error ϵ̄λ =
K

∑
i=1

ϵvad;i/K

For in [1e-5, 1e-4, … 1e4,1e5]:λ

Select λ⋆ = arg min
λ

ϵ̄λ

Select the right for Ridge LRλ
By numerating a set of possible , we select the one that has the

smallest Cross-Valid error:
λ ∈ ℝ+

Split the data into K folds
For i = 1 to K:

ŵk = Ridge LR(!−i, λ),
ϵvad;k = ∑

x,y∈!i

(ŵ⊤
i x − y)2/ |!i |

Output avg validation error ϵ̄λ =
K

∑
i=1

ϵvad;i/K

For in [1e-5, 1e-4, … 1e4,1e5]:λ

Select λ⋆ = arg min
λ

ϵ̄λ

Select the right for Ridge LRλ
By numerating a set of possible , we select the one that has the

smallest Cross-Valid error:
λ ∈ ℝ+

Split the data into K folds
For i = 1 to K:

ŵk = Ridge LR(!−i, λ),
ϵvad;k = ∑

x,y∈!i

(ŵ⊤
i x − y)2/ |!i |

Output avg validation error ϵ̄λ =
K

∑
i=1

ϵvad;i/K

For in [1e-5, 1e-4, … 1e4,1e5]:λ

Select λ⋆ = arg min
λ

ϵ̄λ

Practical Suggestions for combating over/under fitting

Model capacity

Train error

Test error

R1 R2

Practical Suggestions for combating over/under fitting

Model capacity

Train error

Test error
R1: Underfitting (both
train and test errs are

large)
R1 R2

Practical Suggestions for combating over/under fitting

Model capacity

Train error

Test error
R1: Underfitting (both
train and test errs are

large)
R1 R2

Suggestions:

1. Increase complexity
of models

Practical Suggestions for combating over/under fitting

Model capacity

Train error

Test error
R1: Underfitting (both
train and test errs are

large)
R1 R2

Suggestions:

1. Increase complexity
of models

2. More features

Practical Suggestions for combating over/under fitting

Model capacity

Train error

Test error
R1: Underfitting (both
train and test errs are

large)
R1 R2

Suggestions:

1. Increase complexity
of models

2. More features

3. Using Boosting (we
will see it later)

Practical Suggestions for combating over/under fitting

Model capacity

Train error

Test error
R1: Underfitting (both
train and test errs are

large) R2: overfitting (small train
err but large test err)R1 R2

Suggestions:

1. Increase complexity
of models

2. More features

3. Using Boosting (we
will see it later)

Practical Suggestions for combating over/under fitting

Model capacity

Train error

Test error
R1: Underfitting (both
train and test errs are

large) R2: overfitting (small train
err but large test err)R1 R2

Suggestions:

1. More train data

Suggestions:

1. Increase complexity
of models

2. More features

3. Using Boosting (we
will see it later)

Practical Suggestions for combating over/under fitting

Model capacity

Train error

Test error
R1: Underfitting (both
train and test errs are

large) R2: overfitting (small train
err but large test err)R1 R2

Suggestions:

1. More train data

2. Reduce model capacity

Suggestions:

1. Increase complexity
of models

2. More features

3. Using Boosting (we
will see it later)

Practical Suggestions for combating over/under fitting

Model capacity

Train error

Test error
R1: Underfitting (both
train and test errs are

large) R2: overfitting (small train
err but large test err)R1 R2

Suggestions:

1. More train data

2. Reduce model capacity

3. Using Bagging

(we will see it later)

Suggestions:

1. Increase complexity
of models

2. More features

3. Using Boosting (we
will see it later)

