Bias-Variance Tradeoff
& Model Selection



Announcements

HWS and P5 are coming out
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Outline of Today

1. Bias & Variance tradeoff demo on Ridge Linear Regression

2. Derivation of Bias / Variance for Ridge LR

2. Model selection in practice (re-visit Cross Validation)
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Ridge Linear regression w/ fixed features and Gaussian noises

Let us consider the case where features are fixed, i.e., x, ..., X, fixed (ho randomness)
But yl ~ (W*)TXZ + Gi, €i ~ ‘/’/(091)

(This is called LR w/ fixed design)

(So the only randomness of our dataset & = {x;, y,} is coming from the noises ¢
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Ridge Linear regression

Ridge Linear Regression formulation

n
W = arg min 2 (WTxi — yi)z T /IHWH%
W
=1

What we will show now:

Larger A (model becomes “simpler”) => larger bias, but smaller variance

(Q: think about the case where A — 00, what happens to w?)



Ridge Linear regression

Demonstration for 2d ridge linear regression

1. We create 5000 datasets: &, D, ..., Dso00»

2. For a given 4, solve Ridge LR for each dataset, get w, ..., W5y

3. Estimate the mean w = Z w.:/5000

l

4. Plot Wy, ..., W<, and mean w, and the optimal w*
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Derivation of Bias and Variance for Ridge Linear regression

Denote X = [x{,...,x, ] €I dxn 'y — [y, ...,yn]T e R" e = ¢, ...,en]T e R”

Ridge LR in matrix / vector form:

W = arg min X 'w — YH% + /IHWH%
w

Sincey, = (W*)'x;+¢€;, wehaveY=X'w* +¢
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The Expectation of the Ridge LR solution

Recall we have closed form solution for Ridge LR

w=XX"+AD)TIXYy = (XX + /U)_IX(XTW*@ Source of the

= W] = (XX

Let us compute the average w =

+ AD7IX[X

= (XX"+ D)7 XXTw*
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The Bias of Ridge Linear regression
w=EMW]=w*—=AXX"+ 1) In*

Bias term: Z ((v'v — W*)Txi)2
=1
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The Bias of Ridge Linear regression

Bias = 12(w*)' (XX + A7 XXT(XX" + 2D~ 'w*

Figendecomposition on XX ' = UXU'

= . 0 0... Q: how does bias behave
S when 4 = + o0
0 >
(6,/2 + 1)? UTW*
0 R Q: how does bias behave

(oA + 1)? when 4 = (



The Variance of Ridge Linear regression

w=EW =XX"+AD7'XX 'w*



The Variance of Ridge Linear regression

v=EW] = XX"+AD)'XX 'w*

Variance term: Z “(W'x, — w'x)?
i=1



The Variance of Ridge Linear regression

v=EW] = XX"+AD)'XX 'w*

Variance term: Z “(W'x, — w'x)?
i=1

d
= ) o?/(0;+ 2
=1



The Variance of Ridge Linear regression

v=FE[Ww] =XX"+ D) ' XX w*

Variance term: Z “(W'x, — w'x)?
i=1

d
= ) o?/(c;+ 1)’
=1

(Optional — tedious but basic
computation, see note)



The Variance of Ridge Linear regression

v =FE[Ww] = (XX + A~ XXTw*

Variance term: Z “(W'x, — w'x)?

i=1 Q: how does Var behave

d when 4 = + o
= ) o?/(c;+ 1)’
=1

Q: how does Var behave

(Optional — tedious but basic when 4 — 0
computation, see note)
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Ridge Linear regression

Tuning A allows us to control the generalization error of Ridge LR solution:
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Ridge Linear regression

Tuning A allows us to control the generalization error of Ridge LR solution:

-(w'x — y)* = Variance + Bias + Inherent noise
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How to select the best model from data

Examples:
1. Select the right order of polynomials for regression

VQ. Select the right ridge regularization weight A

3. Select the right penalty for slack variables in soft SVM (i.e., the C parameter)
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Select the right /4 for Ridge LR

Cross Validation revisit:

Split the data into K folds

— ~T o ~
x,yNP(Wi X —Vy)-,i.e., test error of w,

nN/
NN/

Fori=1to K:

w, = Ridge LR(Z_;, 1),

sk = 2, (W x =712,/

X,YED
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Select the right /4 for Ridge LR

By numerating a set of possible A € R™, we select the one that has the
smallest Cross-Valid error:

For Ain[1e-5, 1e-4, ... 1e4,1e5]:

Total Error
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Select the right /4 for Ridge LR

By numerating a set of possible A € R™, we select the one that has the
smallest Cross-Valid error:

For Ain[1e-5, 1e-4, ... 1e4,1e5]:
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Practical Suggestions for combating over/under fitting

R1: Underfitting (both
train and test errs are
large)

Suggestions:

Test error

R2: overfitting (small train
err but large test err)

R2

Train error

Suggestions:

1. Increase complexity
of models

2. More features

3. Using Boosting (we
will see it later)

Model capacity 1. More train data
2. Reduce model capacity

3. Using Bagging
(we will see it later)



