
Bias-Variance Tradeoff



Announcements



Overview of the second half the semester

1. A little bit Learning Theory 

2. Make our linear models nonlinear (Kernel)

3. How to combine multiple classifiers into a stronger one (Bagging & Boosting)? 

4. Intro of Neural Networks (old and new)



Outline of Today

1. Intro on Underfitting/Overfitting and Bias/Variance

2. Derivation of the Bias-Variance Decomposition

3. Example on Ridge Linear Regression
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Consider regression problem w/ dataset 𝒟 = {x, y}, (x, y) ∼ P, x ∈ ℝ, y ∈ ℝ

x (e.g., size of the house)

y The Bayes optimal regressor:

ȳ(x) := 𝔼[y |x]

The best we could do, cannot 
beat this one

ȳ(x) = w0 + w1x + w2x2
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Bias:

Bias towards to linear models



Underfitting

x (e.g., size of the house)

y

Now let’s redo linear regression on a different dataset , but from the same distribution𝒟′ 



Underfitting

x (e.g., size of the house)

y

Now let’s redo linear regression on a different dataset , but from the same distribution𝒟′ 



Underfitting

x (e.g., size of the house)

y

Now let’s redo linear regression on a different dataset , but from the same distribution𝒟′ 

The new linear function does not differ too 
much from the old one



Underfitting

x (e.g., size of the house)

y

Now let’s redo linear regression on a different dataset , but from the same distribution𝒟′ 

The new linear function does not differ too 
much from the old one

This is called low variance



Underfitting

x (e.g., size of the house)

y

Now let’s redo linear regression on a different dataset , but from the same distribution𝒟′ 

The new linear function does not differ too 
much from the old one

This is called low variance

Q: what happens when our linear 
predictor is ?h(x) = w0



Underfitting

x (e.g., size of the house)

y

Now let’s redo linear regression on a different dataset , but from the same distribution𝒟′ 

The new linear function does not differ too 
much from the old one

This is called low variance

Q: what happens when our linear 
predictor is ?h(x) = w0

A: in this case,  models the mean of 
the y in data

w0
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Summary on underfitting

1. Often our model is too simple, i.e.., we bias towards too simple models

2. This causes underfitting, i.e., we cannot capture the trend in the data

3. In this case, we have large bias, but low variance (think about the  case)h(x) = w0
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Overfitting

x (e.g., size of the house)

y

Just right versus Overfitting

No strong bias:

Our hypothesis class is all 
polynomials up to 5-th order

i.e., in a priori, no strong bias 
towards linear or quadratic, or 

cubic, etc 
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x (e.g., size of the house)

y

Redo the higher-order polynomial fitting on different dataset 𝒟′ 

The new linear function does differ a lot 
from the old one

This is called high variance
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Summary on Overfitting

1. Often our model is too complex (e.g., can fit noise perfectly to achieve zero training error)

2. This causes overfitting, i.e., cannot generalize well on unseen test example

3. In this case, we have small bias, but large variance 

(tiny change on the dataset cause large change in the fitted functions)



Outline of Today

1. Intro on Underfitting/Overfitting and Bias/Variance

2. Derivation of the Bias-Variance Decomposition

3. Example on Ridge Linear Regression
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Given dataset , a hypothesis class , squared loss ,  
denote  as the ERM solution

𝒟 ℋ ℓ(h, x, y) = (h(x) − y)2

h𝒟

We are interested in the generalization bound of : h𝒟

𝔼𝒟𝔼x,y∼P(h𝒟(x) − y)2

Q: how to estimate this in practice?
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The expectation of our model h𝒟

Since  is random, we consider its expected behavior:h𝒟

h̄ := 𝔼𝒟 [h𝒟]

h̄(x) = 𝔼𝒟 [h𝒟(x)], ∀x

In other words, we have:
Q: what is  is the case where 

hypothesis is ?
h̄

h(x) = w0

A: h̄(x) = 𝔼y[y]
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Formal definition of Bias and Variance

h̄ := 𝔼𝒟 [h𝒟]

Bias: difference between  and the best , i.e.,  h̄ ȳ(x) 𝔼x (ȳ(x) − h̄(x))2

Variance: difference from  and , i.e.,  h̄ h𝒟 𝔼𝒟𝔼x (h𝒟(x) − h̄(x))2

ȳ(x) := 𝔼[y |x]

Difference between our mean and the best

Fluctuation of our random model around its mean
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Generalization error decomposition

h̄ := 𝔼𝒟 [h𝒟] ȳ(x) := 𝔼[y |x]

𝔼𝒟𝔼x,y∼P(h𝒟(x) − y)2

= Bias + Variance + Noise (unavoidable, independent of Algs/models)

We will use the following trick twice: (x − y)2 = (x − z)2 + (z − y)2 + 2(x − z)(z − y)

What we gonna show now:
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Putting the derivations together, we arrive at:

Variance Bias Noise

Note that the noise term is 
independent of training algorithms / 

models
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Ex: Ridge Linear regression

Let us consider the case where features are fixed, i.e.,  fixed (no randomness)x1, …, xn

But yi ∼ (w⋆)⊤xi + ϵi, ϵi ∼ 𝒩(0,1)

(This is called LR w/ fixed design)

(So the only randomness of our dataset  is coming from the noises )𝒟 = {xi, yi} ϵi
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ŵ = arg min
w

n

∑
i=1

(w⊤xi − yi)2 + λ∥w∥2
2



Ex: Ridge Linear regression

Ridge Linear Regression formulation
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Ridge Linear Regression formulation

ŵ = arg min
w

n

∑
i=1

(w⊤xi − yi)2 + λ∥w∥2
2

What we will show now:

Larger  (model becomes “simpler”) => larger bias, but smaller varianceλ

(Q: think about the case where , what happens to ?)λ → ∞ ŵ
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Ex: Ridge Linear regression

Denote X = [x1, …, xn], Y = [y1, …, yn]⊤, ϵ = [ϵ1, …, ϵn]⊤

ŵ = arg min
w

∥X⊤w − Y∥2
2 + λ∥w∥2

2

Since yi = (w⋆)⊤xi + ϵi we have Y = X⊤w⋆ + ϵ
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ŵ = (XX⊤ + λI)−1XY = (XX⊤ + λI)−1X(X⊤w⋆ + ϵ)
Source of the randomness of ŵ

Let us compute :𝔼ϵ[ŵ]

𝔼ϵ[ŵ] = (XX⊤ + λI)−1X[X⊤w⋆ + 𝔼ϵ[ϵ]]

= (XX⊤ + λI)−1XX⊤w⋆

= (XX⊤ + λI)−1(XX⊤ + λI − λI)w⋆ = w⋆ − λ(XX⊤ + λI)−1w⋆
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σd

(σd /λ + 1)2

U⊤w⋆

Q: how does bias behave 
when λ → + ∞
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Eigendecomposition on XX⊤ = UΣU⊤

= (w⋆)⊤U

σ1

(σ1/λ + 1)2 0 0…

0 σ2

(σ2/λ + 1)2 0…
… … …
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σd
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when λ → + ∞

Q: how does bias behave 
when λ → 0
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(Optional — tedious but basic 
computation, see note)



Ex: Ridge Linear regression

𝔼[ŵ] = w⋆ − (XX⊤ + λ)−1λw⋆

Variance term: 
n

∑
i=1

𝔼(ŵ⊤xi − 𝔼[ŵ]⊤xi)2

=
d

∑
i=1

σ2
i /(σi + λ)2

Q: how does Var behave 
when λ → + ∞

Q: how does Var behave 
when λ → 0(Optional — tedious but basic 

computation, see note)



Ex: Ridge Linear regression

In summary, for Ridge LR:

Smaller regularization penalty  => smaller bias, but larger varianceλ

Larger regularization penalty  => larger bias, but smaller varianceλ



Ex: Ridge Linear regression
Tuning  allows us to control the generalization error of Ridge LR solution:λ

𝔼(ŵ⊤x − y)2 = Variance + Bias + Inherent noise

λ

Variance 

Bias 
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Ex: Ridge Linear regression
Tuning  allows us to control the generalization error of Ridge LR solution:λ

𝔼(ŵ⊤x − y)2 = Variance + Bias + Inherent noise

λ

Variance 

Bias 
The  that minimizes Var + Biasλ

Next lecture: how to select 
that in practice


