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1 Ridge Linear Regression with fixed Design

We consider the setting where examples {xi}ni=1 are fixed (i.e., no randomness on the features), while the regression
target {yi} could be random. We further assume that the regression targets yi are generated in the following way:

yi = (w?)>xi + εi, εi ∼ N (0, 1),

where εi are i.i.d Gaussian noises. We can write everything using matrix and vectors. Denote X = [x1, . . . , xn] ∈
Rd×n and Y = [y1, . . . , yn]> ∈ Rn, and ε = [ε1, . . . , εn]> ∈ Rn, we have:

Y = X>w? + ε.

Ridge LR concerns the following optimization ŵ = arg minw ‖X>w − Y ‖22 + λ‖w‖22. Recall the optimal solution
here is

ŵ = (XX> + λI)−1XY = (XX> + λI)−1X(X>w? + ε).

So in this setting, we can think about our dataset D = {xi, yi}ni=1 as follows D = {xi, (w?)>xi + εi}ni=1. Note
that the only randomness here is the Gaussian noise. In ML literature, this is called LR w/ fixed design.

We use the following generalization error we introduced in class to model the performance of ŵ from Ridge LR:

Eε
n∑
i=1

(
ŵ>xi − (w?)>xi

)2
.

Here the expectation is with respect to the randomness of the noises since ŵ depends on the noises — recall the dataset
is random since it has random Gaussian noises. So we are looking at the squared difference between our prediction
ŵ>xi and the best one could get (w?)>xi (i.e., the Bayes optimal), summed over the fixed n examples {x1, . . . , xn}
(again in the fixed design setting, the examples xi are always fixed, i.e., they are not sampled from some distribution).

2 Bias

In this section, we will derive a specific formulation for bias and show that it is monodically increasing wrt λ.
First thing to recall is that ŵ depends on our dataset, i.e., ŵ =

(
XX> + λI

)−1
XY . Since Y has random

noises, ŵ will be a random quantity. So we can compute its expectation.

Eε[ŵ] = Eε
(
XX> + λI

)−1
XY =

(
XX> + λI

)−1
XEε[Y ]

where we use the fact that X are fixed (i.e., this is the fixed design setting), and the expectation Eε denoting the
expectation with respect to the random noise εi, i ∈ [1, . . . , n].
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Since Y = X>w? + ε, and Eε[ε] = 0, we get:

Eε[ŵ] =
(
XX> + λI

)−1
XX>w? =

(
XX> + λI

)−1
(XX> + λI − λI)w?

=
(
XX> + λI

)−1 (
XX> + λI

)
w? − λ

(
XX> + λI

)−1
w?

= w? − λ
(
XX> + λI

)−1
w?.

Note that the above expression also shows that there is now no randomness in Eεŵ anymore.
Now we define the bias as follows,

bias :=

n∑
i=1

(Eε[ŵ]>xi − (w?)>xi)
2 =

n∑
i=1

((Eε[ŵ]− w?)>xi)2

Since we have shown that Eε[ŵ]− w? = −λ
(
XX> + λI

)−1
w?, plug in this into the Bias term, we get:

bias =
n∑
i=1

λ2
(

(w?)>
(
XX> + λI

)−1
xi

)2

= λ2
∑
i

(w?)>
(
XX> + λI

)−1
xix
>
i

(
XX> + λI

)−1
(w?)

= λ2(w?)>
(
XX> + λI

)−1∑
i

[xix
>
i ]
(
XX> + λI

)−1
(w?)

= λ2(w?)>
(
XX> + λI

)−1
XX>

(
XX> + λI

)−1
(w?) (we used

∑
i

xix
>
i = XX>)

Denote the eigendecomposition of XX> as XX> = UΣU>, where Σ is a diagonal matrix diag(σ1, . . . , σd),
where σ1 ≥ σ2 · · · ≥ σd ≥ 0, and U are orthonormal matrix.

One fact is that for XX> + λI , we can easily verify that its eigenvectors are columns of U , and its eigenvalues
are σi + λ for i ∈ [1, . . . , d], i.e., XX> + λI = U(Σ + λI)U>.

Using eigendecomposition, we can express the bias term using eigenvalues:

bias = λ2(w?)>U(Σ + λI)−1U>UΣU>U(Σ + λI)−1U>w?

= λ2(w?)>U(Σ + λI)−1Σ(Σ + λI)−1U>w? we used UU> = U>U = I

= λ2(w?)>U


σ1

(σ1+λ)2
0 0 . . .

0 σ2
(σ2+λ)2

0 . . .

. . . . . . . . .
0, . . . σd

(σd+λ)2

U>w? since Σ and Σ + λI are diagonal

= (w?)>U


σ1

(σ1/λ+1)2
0 0 . . .

0 σ2
(σ2/λ+1)2

0 . . .

. . . . . . . . .
0, . . . σd

(σd/λ+1)2

U>w?
Ok, the above the form for Bias that we would like to analyze a bit.

Case 1: when λ→ 0 In this case, we note that element in the diagonal matrix σi
(σi/λ+1)2

→ 0. This means that
our bias term will approach to zero as well. Namely, when λ = 0, we do not have bias.
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Case 2: when λ → +∞ . In this case, we get σi
(σi/λ+1)2

→ σi. This means that for expression we had for bias
approaches to:

lim
λ→+∞

bias = (w?)>UΣU>w? = (w?)>XX>w? =

n∑
i=1

(x>i w
?)2.

This indeed makes a lot of sense since when λ→ +∞, Ridge linear regression will return ŵ → 0 which means that
we always gonna predict zero, which in turn means that Eεŵ → 0. So in this case, we have large bias.

Monotonicity of Bias Note that Bias is monotonically increasing as λ increases.

3 Variance

Here we will give an explicit formulation for the variance and show that it is monodically decreasing.
Recall that ŵ is a random vector and we have calculated its expectation as Eεŵ =

(
XX> + λI

)−1
XX>w?.

We abuse notation a little bit to write it as E[ŵ] below.
We define the form of variance as follows:

Var := Eε
∑
i

(
(E[ŵ]− ŵ)>xi

)2
= Eε

[
(E[ŵ]− ŵ)>XX>(Eε[ŵ]− ŵ)>

]
Here the expectation Eε is associated with the random vector ŵ and we used the fact that

∑
i xix

>
i = XX> again.

Denote tr(A) as the trace of a matrix A. Recall that we have already had the formulation for both ŵ and E[ŵ], so:

E[ŵ]− ŵ = (XX> + λI)−1XX>w? − (XX> + λI)−1X(X>w? + ε)

= −(XX> + λI)−1Xε

Var = Eε
[
ε>X>(XX> + λI)−1XX>(XX> + λI)−1Xε

]
= Eε tr

(
ε>X>(XX> + λI)−1XX>(XX> + λI)−1Xε

)
= Eε tr

(
εε>X>(XX> + λI)−1XX>(XX> + λI)−1X

)
fact: tr(AB) = tr(BA)

= tr
(
Eε[εε>]X>(XX> + λI)−1XX>(XX> + λI)−1X

)
= tr

(
X>(XX> + λI)−1XX>(XX> + λI)−1X

)
since ε ∼ N (0, In×n)

= tr
(
XX>(XX> + λI)−1XX>(XX> + λI)−1

)
fact: tr(AB) = tr(BA)

Plug in the Eigendecomposition of XX> (and XX> + λI) into the above formulation, we get:

Var = tr
(
UΣU>U(Σ + λI)−1U>UΣU>U(Σ + λI)−1U>

)
= tr

(
UΣ(Σ + λI)−1Σ(Σ + λI)−1U>

)
= tr

(
U>UΣ(Σ + λI)−1Σ(Σ + λI)−1

)
fact: tr(AB) = tr(BA)

= tr
(
Σ(Σ + λI)−1Σ(Σ + λI)−1

)
fact:U>U = I

=
d∑
i=1

σ2i /(σi + λ)2,
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where the last equality uses the fact that Σ(Σ + λI)−1Σ(Σ + λI)−1 as a whole is a diagonal matrix with entries
being σ2i /(σi + λ)2.

Case 1: when λ→ +∞ In this case we have σ2i /(σi + λ)2 → 0, which means that Var→ 0. This makes a lot of
sense since when λ→ +∞, we always have ŵ → 0, which means that there is not too much randomness on ŵ (it
just converges to the zero vector in the limit).

Case 2: when λ→ +0 In this case, we have σ2i /(σi + λ)2 → 1, which means that Var→ d.

Monotonicity of λ Note that when λ increases, our variance decreases.

4 The Bias-Variance Decomposition

Now we can put everything together. For our ultimate generalization error, following what we did in class, we have:

Eε
n∑
i=1

(
ŵ>xi − (w?)>xi

)2
= Eε

n∑
i=1

(
ŵ>xi − E[ŵ]>xi + E[ŵ]>xi − (w?)>xi

)2
=
∑
i

Eε
(
ŵ>xi − E[ŵ]>xi

)2
+
∑
i

Eε
(
E[ŵ]>xi − (w?)>xi

)2

= Variance + Bias =

d∑
i=1

σ2i /(σi + λ)2 + (w?)>U


σ1

(σ1/λ+1)2
0 0 . . .

0 σ2
(σ2/λ+1)2

0 . . .

. . . . . . . . .
0, . . . σd

(σd/λ+1)2

U>w?

Q: why don’t we have the noise term here?
Since Variance is monodically decreasing while Bias is monotonically increasing, there must exist a sweep spot

for λ that minimizes the sum of these two terms. The above formulation allows us in theory to calculate that (just
take the derivative with respect to λ, set it to zero, and solve for λ). Of course in practice we cannot calculate this
sweep spot for λ since we do not know w? and U and σi. So in practice, we use techniques like Cross Validation to
select the best λ.
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