Bias-Variance Decomposition in Ridge Linear Regression

Wen Sun

CS 4780, Fall 2022

1 Ridge Linear Regression with fixed Design

We consider the setting where examples $\{x_i\}_{i=1}^n$ are fixed (i.e., no randomness on the features), while the regression target $\{y_i\}$ could be random. We further assume that the regression targets y_i are generated in the following way:

$$y_i = (w^\star)^\top x_i + \epsilon_i, \quad \epsilon_i \sim \mathcal{N}(0, 1),$$

where ϵ_i are i.i.d Gaussian noises. We can write everything using matrix and vectors. Denote $X = [x_1, \ldots, x_n] \in \mathbb{R}^{d \times n}$ and $Y = [y_1, \ldots, y_n]^\top \in \mathbb{R}^n$, and $\epsilon = [\epsilon_1, \ldots, \epsilon_n]^\top \in \mathbb{R}^n$, we have:

$$Y = X^{\top} w^{\star} + \epsilon.$$

Ridge LR concerns the following optimization $\hat{w} = \arg \min_{w} \|X^{\top}w - Y\|_{2}^{2} + \lambda \|w\|_{2}^{2}$. Recall the optimal solution here is

$$\hat{w} = (XX^{\top} + \lambda I)^{-1}XY = (XX^{\top} + \lambda I)^{-1}X(X^{\top}w^{\star} + \epsilon).$$

So in this setting, we can think about our dataset $\mathcal{D} = \{x_i, y_i\}_{i=1}^n$ as follows $\mathcal{D} = \{x_i, (w^*)^\top x_i + \epsilon_i\}_{i=1}^n$. Note that the only randomness here is the Gaussian noise. In ML literature, this is called LR w/ fixed design.

We use the following generalization error we introduced in class to model the performance of \hat{w} from Ridge LR:

$$\mathbb{E}_{\epsilon} \sum_{i=1}^{n} \left(\hat{w}^{\top} x_i - (w^{\star})^{\top} x_i \right)^2$$

Here the expectation is with respect to the randomness of the noises since \hat{w} depends on the noises — recall the dataset is random since it has random Gaussian noises. So we are looking at the squared difference between our prediction $\hat{w}^{\top}x_i$ and the best one could get $(w^*)^{\top}x_i$ (i.e., the Bayes optimal), summed over the fixed *n* examples $\{x_1, \ldots, x_n\}$ (again in the fixed design setting, the examples x_i are always fixed, i.e., they are not sampled from some distribution).

2 Bias

In this section, we will derive a specific formulation for bias and show that it is monodically increasing wrt λ .

First thing to recall is that \hat{w} depends on our dataset, i.e., $\hat{w} = (XX^{\top} + \lambda I)^{-1}XY$. Since Y has random noises, \hat{w} will be a random quantity. So we can compute its expectation.

$$\mathbb{E}_{\epsilon}[\hat{w}] = \mathbb{E}_{\epsilon} \left(XX^{\top} + \lambda I \right)^{-1} XY = \left(XX^{\top} + \lambda I \right)^{-1} X\mathbb{E}_{\epsilon}[Y]$$

where we use the fact that X are fixed (i.e., this is the fixed design setting), and the expectation \mathbb{E}_{ϵ} denoting the expectation with respect to the random noise $\epsilon_i, i \in [1, ..., n]$.

Since $Y = X^{\top} w^{\star} + \epsilon$, and $\mathbb{E}_{\epsilon}[\epsilon] = 0$, we get:

$$\mathbb{E}_{\epsilon}[\hat{w}] = \left(XX^{\top} + \lambda I\right)^{-1} XX^{\top}w^{\star} = \left(XX^{\top} + \lambda I\right)^{-1} (XX^{\top} + \lambda I - \lambda I)w^{\star}$$
$$= \left(XX^{\top} + \lambda I\right)^{-1} \left(XX^{\top} + \lambda I\right)w^{\star} - \lambda \left(XX^{\top} + \lambda I\right)^{-1}w^{\star}$$
$$= w^{\star} - \lambda \left(XX^{\top} + \lambda I\right)^{-1}w^{\star}.$$

Note that the above expression also shows that there is now no randomness in $\mathbb{E}_{\epsilon}\hat{w}$ anymore.

Now we define the bias as follows,

bias :=
$$\sum_{i=1}^{n} (\mathbb{E}_{\epsilon}[\hat{w}]^{\top} x_i - (w^{\star})^{\top} x_i)^2 = \sum_{i=1}^{n} ((\mathbb{E}_{\epsilon}[\hat{w}] - w^{\star})^{\top} x_i)^2$$

Since we have shown that $\mathbb{E}_{\epsilon}[\hat{w}] - w^{\star} = -\lambda \left(X X^{\top} + \lambda I \right)^{-1} w^{\star}$, plug in this into the Bias term, we get:

$$\begin{split} & \operatorname{bias} = \sum_{i=1}^{n} \lambda^{2} \left((w^{\star})^{\top} \left(XX^{\top} + \lambda I \right)^{-1} x_{i} \right)^{2} \\ &= \lambda^{2} \sum_{i} (w^{\star})^{\top} \left(XX^{\top} + \lambda I \right)^{-1} x_{i} x_{i}^{\top} \left(XX^{\top} + \lambda I \right)^{-1} (w^{\star}) \\ &= \lambda^{2} (w^{\star})^{\top} \left(XX^{\top} + \lambda I \right)^{-1} \sum_{i} [x_{i} x_{i}^{\top}] \left(XX^{\top} + \lambda I \right)^{-1} (w^{\star}) \\ &= \lambda^{2} (w^{\star})^{\top} \left(XX^{\top} + \lambda I \right)^{-1} XX^{\top} \left(XX^{\top} + \lambda I \right)^{-1} (w^{\star}) \quad (\operatorname{we} \operatorname{used} \sum_{i} x_{i} x_{i}^{\top} = XX^{\top}) \end{split}$$

Denote the eigendecomposition of XX^{\top} as $XX^{\top} = U\Sigma U^{\top}$, where Σ is a diagonal matrix diag $(\sigma_1, \ldots, \sigma_d)$, where $\sigma_1 \ge \sigma_2 \cdots \ge \sigma_d \ge 0$, and U are orthonormal matrix.

One fact is that for $XX^{\top} + \lambda I$, we can easily verify that its eigenvectors are columns of U, and its eigenvalues are $\sigma_i + \lambda$ for $i \in [1, ..., d]$, i.e., $XX^{\top} + \lambda I = U(\Sigma + \lambda I)U^{\top}$.

Using eigendecomposition, we can express the bias term using eigenvalues:

$$\begin{split} \operatorname{bias} &= \lambda^2 (w^*)^\top U(\Sigma + \lambda I)^{-1} U^\top U \Sigma U^\top U(\Sigma + \lambda I)^{-1} U^\top w^* \\ &= \lambda^2 (w^*)^\top U(\Sigma + \lambda I)^{-1} \Sigma (\Sigma + \lambda I)^{-1} U^\top w^* \quad \text{we used } U U^\top = U^\top U = I \\ &= \lambda^2 (w^*)^\top U \begin{bmatrix} \frac{\sigma_1}{(\sigma_1 + \lambda)^2} & 0 & 0 \dots \\ 0 & \frac{\sigma_2}{(\sigma_2 + \lambda)^2} & 0 \dots \\ 0 & \frac{\sigma_d}{(\sigma_d + \lambda)^2} \end{bmatrix} U^\top w^* \quad \text{since } \Sigma \text{ and } \Sigma + \lambda I \text{ are diagonal} \\ &= (w^*)^\top U \begin{bmatrix} \frac{\sigma_1}{(\sigma_1 / \lambda + 1)^2} & 0 & 0 \dots \\ 0 & \frac{\sigma_2}{(\sigma_2 / \lambda + 1)^2} & 0 \dots \\ 0 & \frac{\sigma_d}{(\sigma_d / \lambda + 1)^2} \end{bmatrix} U^\top w^* \end{split}$$

Ok, the above the form for Bias that we would like to analyze a bit.

Case 1: when $\lambda \to 0$ In this case, we note that element in the diagonal matrix $\frac{\sigma_i}{(\sigma_i/\lambda+1)^2} \to 0$. This means that our bias term will approach to zero as well. Namely, when $\lambda = 0$, we do not have bias.

Case 2: when $\lambda \to +\infty$. In this case, we get $\frac{\sigma_i}{(\sigma_i/\lambda+1)^2} \to \sigma_i$. This means that for expression we had for bias approaches to:

$$\lim_{\lambda \to +\infty} \operatorname{bias} = (w^{\star})^{\top} U \Sigma U^{\top} w^{\star} = (w^{\star})^{\top} X X^{\top} w^{\star} = \sum_{i=1}^{n} (x_i^{\top} w^{\star})^2.$$

This indeed makes a lot of sense since when $\lambda \to +\infty$, Ridge linear regression will return $\hat{w} \to 0$ which means that we always gonna predict zero, which in turn means that $\mathbb{E}_{\epsilon}\hat{w} \to 0$. So in this case, we have large bias.

Monotonicity of Bias Note that Bias is monotonically increasing as λ increases.

3 Variance

Here we will give an explicit formulation for the variance and show that it is monodically decreasing.

Recall that \hat{w} is a random vector and we have calculated its expectation as $\mathbb{E}_{\hat{w}} = (XX^{\top} + \lambda I)^{-1} XX^{\top} w^*$. We abuse notation a little bit to write it as $\mathbb{E}[\hat{w}]$ below.

We define the form of variance as follows:

$$\operatorname{Var} := \mathbb{E}_{\epsilon} \sum_{i} \left((\mathbb{E}[\hat{w}] - \hat{w})^{\top} x_{i} \right)^{2} = \mathbb{E}_{\epsilon} \left[(\mathbb{E}[\hat{w}] - \hat{w})^{\top} X X^{\top} (\mathbb{E}_{\epsilon}[\hat{w}] - \hat{w})^{\top} \right]$$

Here the expectation \mathbb{E}_{ϵ} is associated with the random vector \hat{w} and we used the fact that $\sum_{i} x_{i} x_{i}^{\top} = X X^{\top}$ again. Denote $\operatorname{tr}(A)$ as the trace of a matrix A. Recall that we have already had the formulation for both \hat{w} and $\mathbb{E}[\hat{w}]$, so:

$$\mathbb{E}[\hat{w}] - \hat{w} = (XX^{\top} + \lambda I)^{-1}XX^{\top}w^{\star} - (XX^{\top} + \lambda I)^{-1}X(X^{\top}w^{\star} + \epsilon)$$
$$= -(XX^{\top} + \lambda I)^{-1}X\epsilon$$

$$\begin{aligned} \operatorname{Var} &= \mathbb{E}_{\epsilon} \left[\epsilon^{\top} X^{\top} (XX^{\top} + \lambda I)^{-1} XX^{\top} (XX^{\top} + \lambda I)^{-1} X\epsilon \right] \\ &= \mathbb{E}_{\epsilon} \operatorname{tr} \left(\epsilon^{\top} X^{\top} (XX^{\top} + \lambda I)^{-1} XX^{\top} (XX^{\top} + \lambda I)^{-1} X\epsilon \right) \\ &= \mathbb{E}_{\epsilon} \operatorname{tr} \left(\epsilon \epsilon^{\top} X^{\top} (XX^{\top} + \lambda I)^{-1} XX^{\top} (XX^{\top} + \lambda I)^{-1} X \right) & \text{fact: } \operatorname{tr}(AB) = \operatorname{tr}(BA) \\ &= \operatorname{tr} \left(\mathbb{E}_{\epsilon} [\epsilon \epsilon^{\top}] X^{\top} (XX^{\top} + \lambda I)^{-1} XX^{\top} (XX^{\top} + \lambda I)^{-1} X \right) \\ &= \operatorname{tr} \left(X^{\top} (XX^{\top} + \lambda I)^{-1} XX^{\top} (XX^{\top} + \lambda I)^{-1} X \right) & \text{since } \epsilon \sim \mathcal{N}(0, I_{n \times n}) \\ &= \operatorname{tr} \left(XX^{\top} (XX^{\top} + \lambda I)^{-1} XX^{\top} (XX^{\top} + \lambda I)^{-1} \right) & \text{fact: } \operatorname{tr}(AB) = \operatorname{tr}(BA) \end{aligned}$$

Plug in the Eigendecomposition of XX^{\top} (and $XX^{\top} + \lambda I$) into the above formulation, we get:

$$\begin{aligned} \operatorname{Var} &= \operatorname{tr} \left(U \Sigma U^{\top} U (\Sigma + \lambda I)^{-1} U^{\top} U \Sigma U^{\top} U (\Sigma + \lambda I)^{-1} U^{\top} \right) \\ &= \operatorname{tr} \left(U \Sigma (\Sigma + \lambda I)^{-1} \Sigma (\Sigma + \lambda I)^{-1} U^{\top} \right) \\ &= \operatorname{tr} \left(U^{\top} U \Sigma (\Sigma + \lambda I)^{-1} \Sigma (\Sigma + \lambda I)^{-1} \right) & \operatorname{fact:} \operatorname{tr} (AB) = \operatorname{tr} (BA) \\ &= \operatorname{tr} \left(\Sigma (\Sigma + \lambda I)^{-1} \Sigma (\Sigma + \lambda I)^{-1} \right) & \operatorname{fact:} U^{\top} U = I \\ &= \sum_{i=1}^{d} \sigma_i^2 / (\sigma_i + \lambda)^2, \end{aligned}$$

where the last equality uses the fact that $\Sigma(\Sigma + \lambda I)^{-1}\Sigma(\Sigma + \lambda I)^{-1}$ as a whole is a diagonal matrix with entries being $\sigma_i^2/(\sigma_i + \lambda)^2$.

Case 1: when $\lambda \to +\infty$ In this case we have $\sigma_i^2/(\sigma_i + \lambda)^2 \to 0$, which means that $\text{Var} \to 0$. This makes a lot of sense since when $\lambda \to +\infty$, we always have $\hat{w} \to 0$, which means that there is not too much randomness on \hat{w} (it just converges to the zero vector in the limit).

Case 2: when $\lambda \to +0$ In this case, we have $\sigma_i^2/(\sigma_i + \lambda)^2 \to 1$, which means that $\operatorname{Var} \to d$.

Monotonicity of λ Note that when λ increases, our variance decreases.

4 The Bias-Variance Decomposition

Now we can put everything together. For our ultimate generalization error, following what we did in class, we have:

$$\begin{split} & \mathbb{E}_{\epsilon} \sum_{i=1}^{n} \left(\hat{w}^{\top} x_{i} - (w^{\star})^{\top} x_{i} \right)^{2} = \mathbb{E}_{\epsilon} \sum_{i=1}^{n} \left(\hat{w}^{\top} x_{i} - \mathbb{E}[\hat{w}]^{\top} x_{i} + \mathbb{E}[\hat{w}]^{\top} x_{i} - (w^{\star})^{\top} x_{i} \right)^{2} \\ & = \sum_{i} \mathbb{E}_{\epsilon} \left(\hat{w}^{\top} x_{i} - \mathbb{E}[\hat{w}]^{\top} x_{i} \right)^{2} + \sum_{i} \mathbb{E}_{\epsilon} \left(\mathbb{E}[\hat{w}]^{\top} x_{i} - (w^{\star})^{\top} x_{i} \right)^{2} \\ & = \text{Variance} + \text{Bias} = \sum_{i=1}^{d} \sigma_{i}^{2} / (\sigma_{i} + \lambda)^{2} + (w^{\star})^{\top} U \begin{bmatrix} \frac{\sigma_{1}}{(\sigma_{1}/\lambda+1)^{2}} & 0 & 0 \dots \\ 0 & \frac{\sigma_{2}}{(\sigma_{2}/\lambda+1)^{2}} & 0 \dots \\ 0, & \dots & \frac{\sigma_{d}}{(\sigma_{d}/\lambda+1)^{2}} \end{bmatrix} U^{\top} w^{\star} \end{split}$$

Q: why don't we have the noise term here?

Since Variance is monodically decreasing while Bias is monotonically increasing, there must exist a sweep spot for λ that minimizes the sum of these two terms. The above formulation allows us *in theory* to calculate that (just take the derivative with respect to λ , set it to zero, and solve for λ). Of course in practice we cannot calculate this sweep spot for λ since we do not know w^* and U and σ_i . So in practice, we use techniques like Cross Validation to select the best λ .