Fairness in Ranking & Wrap-Up

CS4780/5780 – Machine Learning Fall 2019

Nika Haghtalab & Thorsten Joachims

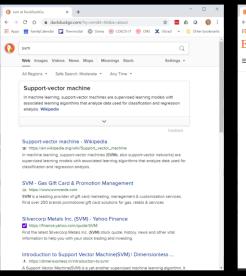
Cornell University

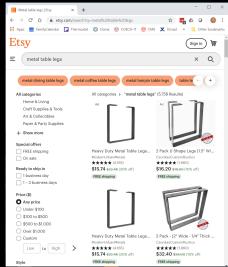
Reading: None

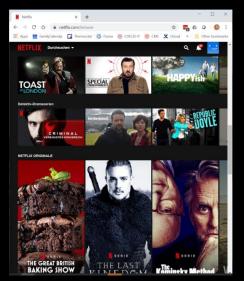
Ranking in Online Systems

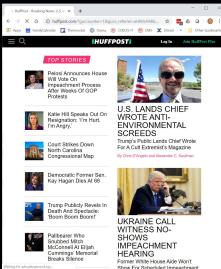
Ranking function π that ranks items for context x.

→ Learning-to-Rank









How do we train these systems?

Goal: Maximize utility of rankings to the users.

Probability Ranking Principle [Robertson, 1977]:

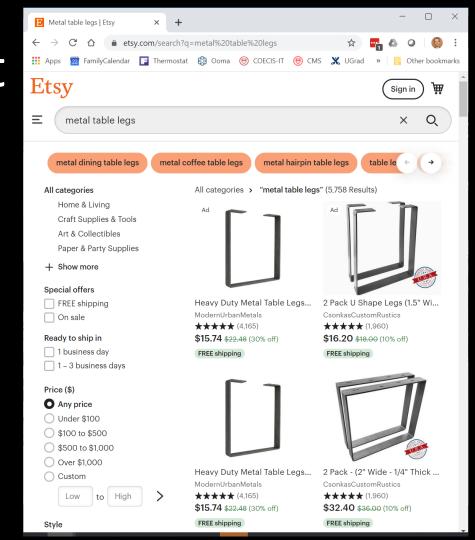
- Rank documents by probability of relevance $\rightarrow y^*$
- For virtually any measure Δ of ranking quality

$$y^* \coloneqq \operatorname{argmax}_{v}[\Delta(y|x)]$$

Two-Sided Market

Online Retail

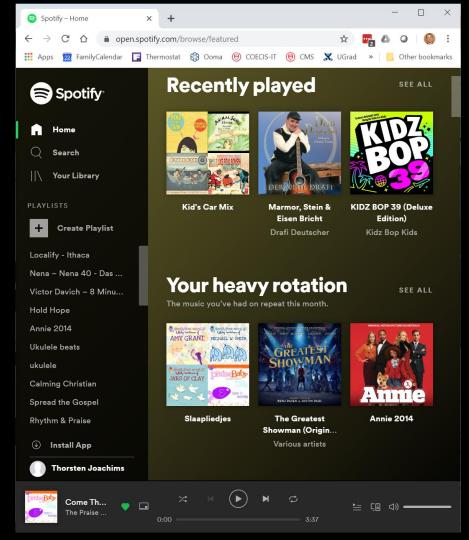
- Utility to Users:
 Customers find products
 they want
- Utility to Items:
 Sellers get revenue



Two-Sided Market

Music Streaming

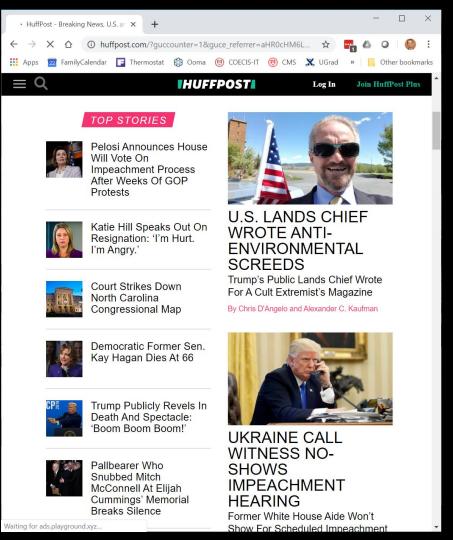
- Utility to Users:
 - Customers find music they enjoy
- Utility to Items:
 - Artists get streaming revenue



Two-Sided Market

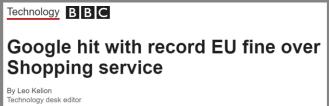
News

- Utility to Users:
 - Readers find relevant articles
- Utility to Items:
 - Writers get their voice out (and ad revenue)



What can go wrong?

Current Learning-to-Rank methods focus only on users, and are oblivious to impact on items.



Wenn Maschinen kalt entscheiden

Algorithmen urteilen über Arbeitslose, Straftäter und Job-Bewerber. Eine Kommission der Bundesregierung will ihre Macht nun bändigen. Kann das gelingen?

Eine Analyse von Ann-Kathrin Nezik

ZEIT ONLINE

23. Oktober 2019, 16:46 Uhr / Editiert am 24. Oktober 2019, 15:40 Uhr / DIE ZEIT Nr. 44/2019, 24. Oktober 2019 / 9 Kommentare

Fairness of Exposure

Fair ranking policy π allocates exposure to items based on merit.

Endogenous Factors

How to allocate exposure based on merit in order to

- Satisfy legal requirements
- Shape marketplace dynamics (e.g. Spotify, superstar economics)
- Spam, Polarization

Exogenous Factors

How to estimate merit without biases like

- Position bias
- Trust bias
- Uncertainty bias
- Historical actions
- Stereotypes

Are Conventional Methods Fair?

Probability Ranking Principle:

- Rank documents by probability of relevance → y*
 [Robertson, 1977]
- For virtually any measure Δ of ranking quality

$$y^* \coloneqq \operatorname{argmax}_y[\Delta(y|x)]$$

Are rankings fair/desirable?

F,	Top News Stories				
1	Rank	Item	P(read)		
1	1	Times 1	50.99		
= 1	2	Times 2	50.98		
	3	Times 3	50.97		
1	•••		•••		
1	100	Post 1	49.99		
	101	Post 2	49.98		
1	102	Post 3	49.97		
•	•••	***			

Position-Based Exposure Model

Definition:

Exposure e_j is the probability a users observes the item at position j.

How to estimate?

- Eye tracking [Joachims et al. 2007]
- Intervention studies [Joachims et al. 2017]
- Intervention harvesting [Agarwal et al. 2019] [Fang et al. 2019]

Rank	Exposure P(observe)	
1	e_1	
2	e_2	
3	e_3	
100	e_{100}	
101	e_{101}	
102	e_{102}	

Fairness Constraints

$$exposure = f(relevance)$$

- Disparate Exposure:
 - Expected exposure proportional to the expected relevance of the group
- Disparate Impact:
 - Expected revenue (e.g. clicks) proportional to the expected relevance of the group
- Group parity:
 - Expected exposure equal for all groups

Probabilistic Ranking Policies $\pi(y|x)$

Exposure and Quality for $\pi(y|x)$

$$expo(i|x) = \sum_{j} \mathbb{P}_{i,j} e_{j}$$

$$qual(\pi|x) = \sum_{i} \sum_{j} e_{j} \mathbb{P}_{i,j} rel_{i}$$

 $\mathbb{P}_{i,j}$ = Prob that item i is ranked at position j e_j = exposure at position j

y_1	y_2	y_3	y_4
Α	В	Α	В
В	Α	С	С
С	С	В	Α
D	D	D	G
Е	Е	Е	F
F	F	F	Е
G	G	G	D

0.52 0.23 0.20 0.05

Disparate Exposure Constraint

Group Exposure and Merit

$$expo(G|P) = \sum_{i \in G} expo(i|x)$$
 $rel(G|P) = \sum_{i \in G} rel(i|x)$

Group Fairness Constraint

$$\frac{expo(G_0|x)}{rel(G_0|x)} = \frac{expo(G_1|x)}{rel(G_1|x)}$$

→ Make exposure proportional to relevance

Computing the Best Fair Policy

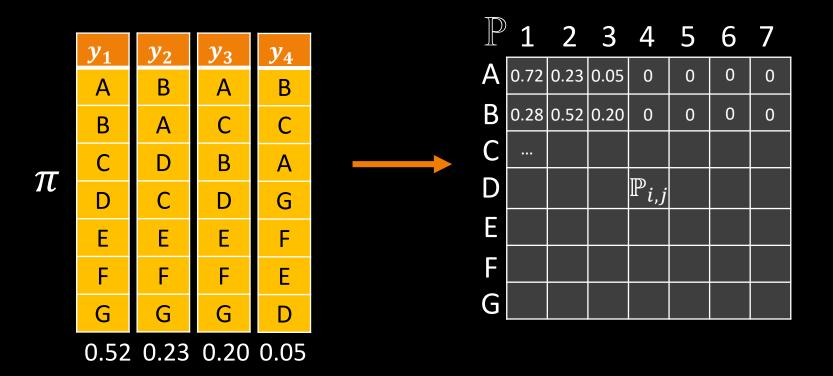
Goal: Maximize ranking quality while fair to items.

$$\pi^*(y|x) = \operatorname{argmax}_{\pi} \qquad [\operatorname{qual}(\pi|x)]$$

$$s.t. \qquad \frac{\exp(G_0|x)}{\operatorname{rel}(G_0|x)} = \frac{\exp(G_1|x)}{\operatorname{rel}(G_1|x)}$$

→ Computationally hard!

Marginal Rank Distribution P



Computing the Best Fair Policy

• Optimal \mathbb{P}^* is solution of linear program

$$\mathbb{P}^* = \operatorname{argmax}_{\mathbb{P}}$$
 $[rel^T \mathbb{P}e]$ p is doubly stochastic $\mathbb{P}1 = 1$ $0 \leq \mathbb{P} \leq 1$ Fairness $rel_2 g_1^T \mathbb{P}e = rel_1 g_2^T \mathbb{P}e$

Computing π^* from \mathbb{P}^*

Birkhoff-von Neumann decomposition

$$\mathbb{P}^* = \theta_1 P_1 + \dots + \theta_k P_k$$

where $P_1 \dots P_k$ are permutation matrices and $\theta_i \geq 0$ with $\sum_i \theta_i = 1$.

→ Ranking policy
$$\pi^*(y|x) = \begin{vmatrix} \theta_i & if (y = P_i) \\ 0 & else \end{vmatrix}$$

Summary of Method

- 1. Estimate relevances r for query x
- 2. Define (merit-based) fairness constraint
- 3. Solve linear program for marginal rank matrix

```
\mathbb{P}^* = \operatorname{argmax}_{\mathbb{P}} \quad [r^T \mathbb{P}q]
s.t. \quad 1^T \mathbb{P} = 1
\mathbb{P}1 = 1
0 \le \mathbb{P} \le 1
\mathbb{P} \text{ is } fair
```

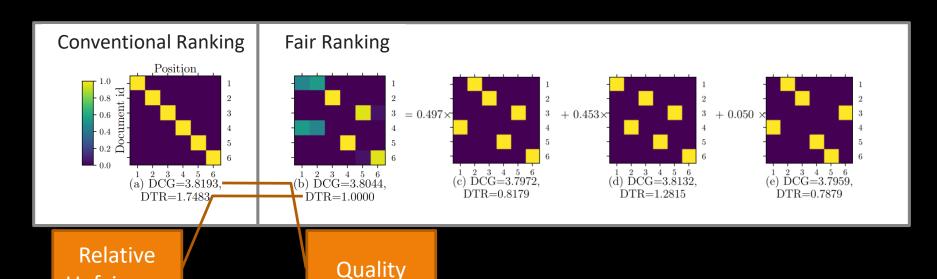
4. Compute ranking policy π^* from \mathbb{P}^*

Example

Six items, two groups

Unfairness

• Relevances: $rel(G_1) = \{82\%, 81\%, 80\%\}, rel(G_2) = \{79\%, 78\%, 77\%\}$



Fairness of Exposure

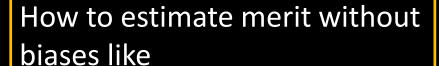
Fair ranking policy π allocates exposure to items based on merit.

Endogenous Factors

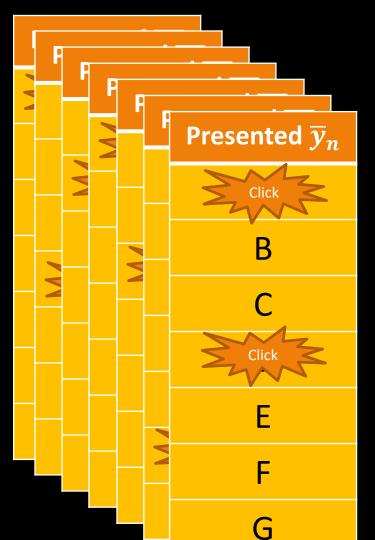
How to allocate exposure based on merit in order to

- Satisfy legal requirements
- Shape marketplace dynamics (e.g. Spotify, superstar economics)
- Spam, Polarization

Exogenous Factors



- Position bias
- Trust bias
- Uncertainty bias
- Historical actions
- Stereotypes



Estimating Merit from Interactions

Data

- Query distribution: $x_i \sim P(X)$
- Deployed ranker: $\bar{y}_j = \boldsymbol{\pi_0}(x_j)$
- Feedback: clicks, purchases, plays, reads
- → Feedback is biased!

Modeling Position Bias

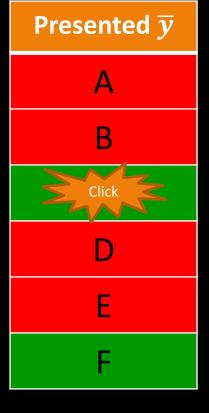
- Assume:
 - Click implies observed and relevant:

$$(click_i = 1) \leftrightarrow (obs_i = 1) \land (rel_i = 1)$$

- Problem:
 - No click can mean not relevant OR not observed

$$(click_i = 0) \leftrightarrow (obs_i = 0) \lor (rel_i = 0)$$

→ Understand observation mechanism



Inverse Propensity Score Estimator

- Observation Propensities
 - $-Q(obs_i = 1|x, \overline{y})$
 - Random variable $obs_i \in \{0,1\}$ indicates whether relevance label rel_i is observed.
 - Can use position-based exposure $Q(obs_i = 1|x, \overline{y}) = e_i$
- De-biased Regression via IPS weighting
 - → In expectation independent of past rankings!

Presented \overline{y}	Q
Α	1.0
В	0.8
С	0.5
D	0.2
Е	0.2
F	0.2

Counterfactual Policy Learning

- Policy Learning for Contextual Bandits and Ranking
 - Data is biased by past system actions
 - Propensity logging and/or propensity estimation
 - Unbiased learning objective based on causal inference
 - Inverse Propensity Score (IPS) weighting estimators
 - Directly optimize effectiveness of policy
 - Policy-gradient methods like POEM [Swaminathan & Joachims 2015], BanditNet [Joachims et al. 2018], Propensity LTR [Joachims et al. 2017]
- Transforming how industry approaches these problems
 - YouTube recommendations [Chen et al. 2019], Spotify [McInerny et al. 2018], Google Drive [Agarwal et al. 2019], ...

Fairness of Exposure

Fair ranking policy π allocates exposure to items based on merit.

Endogenous Factors

How to allocate exposure based on merit in order to

- Satisfy legal requirements
- Shape marketplace dynamics (e.g. Spotify, superstar economics)
- Spam, Polarization

Exogenous Factors

How to estimate merit without biases like

- Position bias
- Trust bias
- Uncertainty bias
- Historical actions
- Stereotypes

Summary and Conclusions

- Take care of the biases in the data
 - Improve quality, solid foundation for decisions
- Shape how system serves all constituencies
 - Fairness, incentives and market dynamics, legal
- → Long term health of the system

http://www.joachims.org

WRAP-UP

Theme: Prediction and Action

- Building intelligent systems vs. analyzing existing systems
 - Prediction
 - Intelligent action
 - Guarantees on prediction/action quality

- → CS4786 Machine Learning for Data Science
- → CS4850 Math Found for the Information Age
- → INFO 6150 Advanced Topic Models

Theme: Overfitting

- Fundamental trade-off in learning
 - Training error vs. prediction error
 - Model capacity
 - Statistical learning theory
 - Empirical risk minimization

Theme: Massive Overparameterization

- The success story of machine learning
 - Regularized linear models
 - Kernels
 - Deep networks
 - → Number of parameters >> number of examples

Theme: Theoretical Underpinning

- Theory for understanding sake
 - Identify the mechanisms at play in ML
 - Understand model complexity
 - Understand common themes between algorithms

Design Approaches for ML

- Empirical Risk Minimization (ERM)
 - Fixed at training time: class of decision rules h: X → Y, loss, x and y
 - Strategy: minimize training loss
- Conditional Probability Models
 - Fixed at training time: class of models for P(Y|X), x and y
 - Strategy: max conditional likelihood or MAP (or Bayes)
- Generative Models
 - Fixed at training time: class models for P(Y,X)
 - Strategy: max likelihood or MAP (or Bayes)
- Not covered: Bayesian ML perspective → ORIE 6741

Batch Learning for Classification

ERM

- Decision Trees
- Perceptron
- SVMs
- Neural Networks
- Boosting
- Conditional Probability
 - Logistic Regression
 - Conditional Random Fields
 - Ridge Regression
- Generative
 - Multinomial Naïve Bayes
 - Multivariate Naïve Bayes
 - Linear Discriminant

Other Methods

- Gaussian Processes
- Deep Networks
- Recurrent Networks
- Parametric (Graphical) Models
- Matrix factorization
- Many, many more ...

- *-Regression
- *-Multiclass

Structured Output Prediction

- ERM
 - Structural SVMs
- Conditional Probability
 - Conditional Random Fields

- Generative
 - Hidden Markov Model

- Other Methods
 - Maximum Margin Markov
 Networks
 - Markov Random Fields
 - Bayesian Networks
 - Statistical Relational Learning
 - Markov Logic Networks
 - Encoder/Decoder Networks
- → NLP classes

Online Learning

- Expert Setting
 - Halving Algorithm
 - Weighted Majority
 - Randomized WM
- Bandit Setting
 - None

- Other Methods
 - UCB
 - EXP3
 - Follow the Leader
 - Partial Monitoring
 - Contextual Bandits
 - Dueling Bandits
 - Coactive Learning

→ CS6781 Theoretical Foundations of Machine Learning

Unsupervised Learning

- Clustering
 - None

- → CS4786 Machine Learning for Data Science
- → CS4850 Math Found for the Information Age
- → INFO 6150 Advanced Topic Models

- Other Methods
 - Spectral Clustering
 - Multi-Dimensional Scaling
 - Latent Dirichlet Allocation
 - Semantic Embeddings
 - Deep Auto-Encoders
- Other Tasks
 - Outlier Detection
 - Novelty Detection
 - Dimensionality Reduction
 - Non-Linear Manifold Detection

ML in Computer Visions

- Covered
 - Feedforward NeuralNetworks

- Other
 - Convolutional Networks
 - More Deep Learning
 - Even more Deep Learning

- → CS6670 Computer Vision
- → CS4670 Intro Computer Vision

Learning to Act

- Covered
 - Off-policy policy learning
 - Contextual Bandits

- Other
 - Reinforcement learning
 - Markov Decision Processes
 - Model-based vs. model-free
 - On policy vs. off policy
 - Policy gradient

→ CS4700 Artificial Intelligence

ML and Causality

- Covered
 - Potential outcomes model

- Other
 - Observational setting
 - Instrumental variables
 - Continuous treatments
 - Longitudinal treatments
 - Causal discovery
 - Parameter inference
 - Causal networks
 - Structural equation models

ML and Fairness

- Covered
 - Privacy
 - Intelligibility
 - Fairness

- Other
 - Accountability
 - Transparency
 - Algorithms and guarantees

→ INFO4270: Ethics and Policy in DS

FINAL EXAM SUNDAY 7:00PM, BARTON