Learning to Act and Causality

CS4780/5780 – Machine Learning Fall 2019

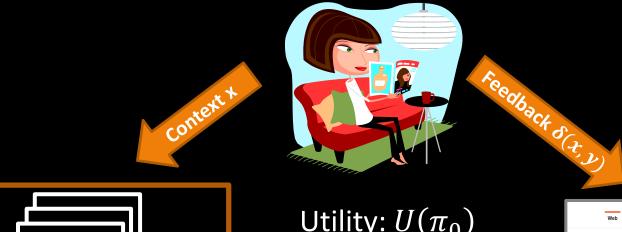
Nika Haghtalab & Thorsten Joachims

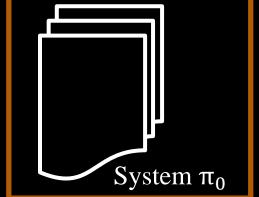
Cornell University

Reading:

G. Imbens, D. Rubin, Causal Inference for Statistics ..., 2015. Chapter 1.

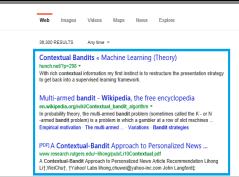
Interactive System Schematic





Utility: $U(\pi_0)$

Action y for x



News Recommender

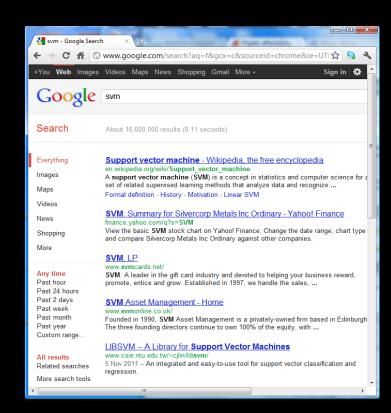
- Context x:
 - User
- Action *y*:
 - Portfolio of newsarticles
- Feedback $\delta(x,y)$:
 - Reading time in minutes

Music Voice Assistant

- Context *x*:
 - User and speech
- Action *y*:
 - Track that is played
- Feedback $\delta(x,y)$:
 - Listened to the end

- Context x:
 - Query
- Action *y*:
 - Ranking
- Feedback $\delta(x,y)$:
 - Click / no-click

Search Engine



Log Data from Interactive Systems

Data

$$S = \left((x_1, y_1, \delta_1), \dots, (x_n, y_n, \delta_n)\right)$$

- → Partial Information (aka "Contextual Bandit") Feedback
- Properties
 - Contexts x_i drawn i.i.d. from unknown P(X)
 - Actions y_i selected by existing system $\pi_0: X \to Y$
 - Feedback δ_i from unknown function $\delta: X \times Y \to \Re$

Goal

Use interaction log data

$$S = ((x_1, y_1, \delta_1), ..., (x_n, y_n, \delta_n))$$

- for evaluation of system π
 - Offline estimate of online performace of some system π .
 - System π can be different from π_0 that generated log.
- for learning new system π

Evaluation: Outline

- Offline Evaluating of Online Metrics
 - A/B Testing (on-policy)
 - → Counterfactual estimation from logs (off-policy)
- Approach 1: "Model the world"
 - Imputation via reward prediction
- Approach 2: "Model the bias"
 - Counterfactual model and selection bias
 - Inverse propensity scoring (IPS) estimator

Online Performance Metrics

Example metrics

- CTR
- Revenue
- Time-to-success
- Interleaving
- Etc.
- → Correct choice depends on application and is not the focus of this lecture.

This lecture:

Metric encoded as $\delta(x, y)$ [click/payoff/time for (x,y) pair]

System

 Definition [Deterministic Policy]: Function

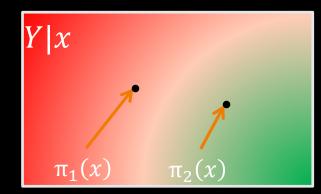
$$y = \pi(x)$$

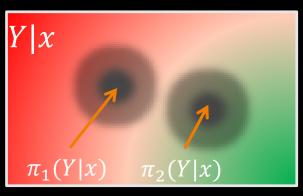
that picks action y for context x .

 Definition [Stochastic Policy]: Distribution

$$\pi(y|x)$$

that samples action y given context x



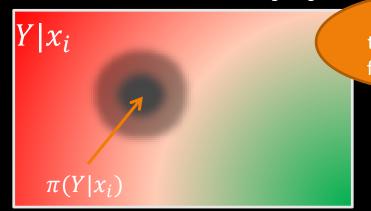


System Performance

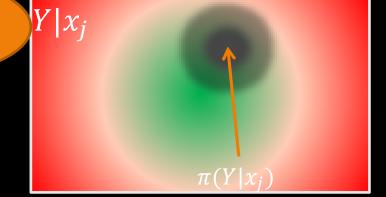
Definition [Utility of Policy]:

The expected reward / utility $\overline{\mathsf{U}(\pi)}$ of policy π is

$$U(\pi) = \int \int \delta(x, y) \pi(y|x) P(x) dx dy$$



e.g. reading time of user x for portfolio y



Online Evaluation: A/B Testing

Given $S = ((x_1, y_1, \delta_1), ..., (x_n, y_n, \delta_n))$ collected under π_0 ,

$$\widehat{U}(\pi_0) = \frac{1}{n} \sum_{i=1}^n \delta_i$$

→ A/B Testing

Deploy π_1 : Draw $x \sim P(X)$, predict $y \sim \pi_1(Y|x)$, get $\delta(x,y)$

Deploy π_2 : Draw $x \sim P(X)$, predict $y \sim \pi_2(Y|x)$, get $\delta(x,y)$

•

Deploy $\pi_{|H|}$: Draw $x \sim P(X)$, predict $y \sim \pi_{|H|}(Y|x)$, get $\delta(x,y)$

Pros and Cons of A/B Testing

Pro

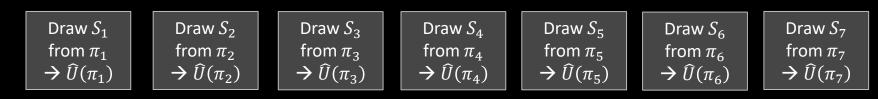
- User centric measure
- No need for manual ratings
- No user/expert mismatch

Consi

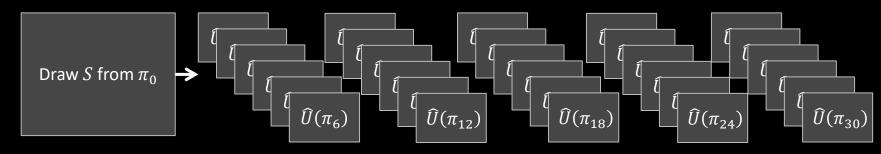
- Requires interactive experimental control
- Risk of fielding a bad or buggy π_i
- Number of A/B Tests limited
- Long turnaround time

Evaluating Online Metrics Offline

Online: On-policy A/B Test



Offline: Off-policy Counterfactual Estimates

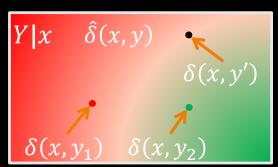


Evaluation: Outline

- Offline Evaluating of Online Metrics
 - A/B Testing (on-policy)
 - → Counterfactual estimation from logs (off-policy)
- Approach 1: "Model the world"
 - Imputation via reward prediction
- Approach 2: "Model the bias"
 - Counterfactual model and selection bias
 - Inverse propensity scoring (IPS) estimator

Approach 1: Reward Predictor

- Idea:
 - Use $S = ((x_1, y_1, \delta_1), \dots, (x_n, y_n, \delta_n))$ from π_0 to estimate reward predictor $\hat{\delta}(x, y)$

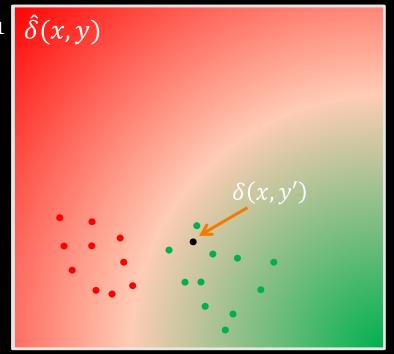


- Deterministic π : Simulated A/B Testing with predicted $\hat{\delta}(x,y)$
 - For actions $y_i' = \pi(x_i)$ from new policy π , generate predicted log $S' = \left(\left(x_1, y_1', \hat{\delta}(x_1, y_1') \right), \dots, \left(x_n, y_n', \hat{\delta}(x_n, y_n') \right) \right)$
 - Estimate performace of π via $\widehat{U}_{rp}(\pi) = \frac{1}{n} \sum_{i=1}^{n} \widehat{\delta}(x_i, y_i')$
- Stochastic π : $\widehat{U}_{rp}(\pi) = \frac{1}{n} \sum_{i=1}^{n} \sum_{y} \widehat{\delta}(x_i, y) \pi(y|x_i)$

Regression for Reward Prediction

Learn $\hat{\delta}: x \times y \to \Re$

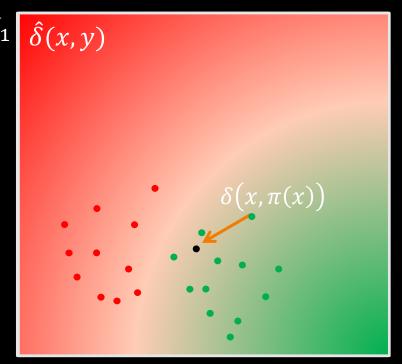
- 1. Represent via features $\Psi(x,y)$
- 2. Learn regression based on $\Psi(x, y)$ from S collected under π_0
- 3. Predict $\hat{\delta}(x, y')$ for $y' = \pi(x)$ of new policy π



Problems of Reward Predictor

- Modeling bias
 - choice of features and model
- Selection bias
 - $-\pi_0$'s actions are overrepresented

$$\rightarrow \widehat{U}_{rp}(\pi) = \frac{1}{n} \sum_{i} \widehat{\delta}(x_i, \pi(x_i))$$
 Can be unreliable and biased



Evaluation: Outline

- Offline Evaluating of Online Metrics
 - A/B Testing (on-policy)
 - → Counterfactual estimation from logs (off-policy)
- Approach 1: "Model the world"
 - Imputation via reward prediction
- Approach 2: "Model the bias"
 - Counterfactual model and selection bias
 - Inverse propensity scoring (IPS) estimator

Approach "Model the Bias"

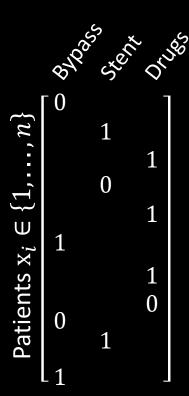
• Idea:

Fix the mismatch between the distribution $\pi_0(Y|x)$ that generated the data and the distribution $\pi(Y|x)$ we aim to evaluate.

$$U(\pi_0) = \int \int \delta(x, y) \pi_0(y|x) P(x) dx dy$$

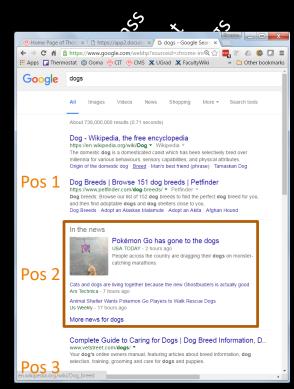
Potential Outcome Model

- Example: Treating Heart Attacks
 - Treatments: *Y*
 - Bypass / Stent / Drugs
 - Chosen treatment for patient x_i : y_i
 - Outcomes: δ_i
 - 5-year survival: 0 / 1
 - Which treatment is best?



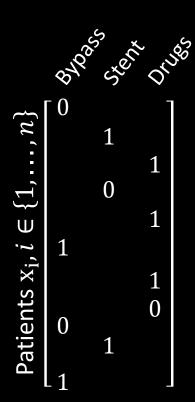
Counterfactual Model

- Placing Vertical Example: Treating Heart Attacks
 - Treatments: Y
 - Bypass / Stent / Drugs Pos 1 / Pos 2 / Pos 3
 - Chosen treatment for patient x_i : y_i
 - Outcomes: δ_i
 - 5-year survival: 0 / T Click / no Click on SERP
 - Which treatment is best?



Potential Outcome Model

- Example: Treating Heart Attacks
 - Treatments: *Y*
 - Bypass / Stent / Drugs
 - Chosen treatment for patient x_i : y_i
 - Outcomes: δ_i
 - 5-year survival: 0 / 1
 - Which treatment is best?
 - Everybody Drugs
 - Everybody Stent
 - Everybody Bypass
 - \rightarrow Drugs 3/4, Stent 2/3, Bypass 2/4 really?



Treatment Effects

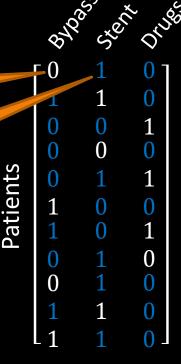
Average Treatment Effect of Treatment y

$$- U(y) = \frac{1}{n} \sum_{i} \delta(x_i, y)$$

- Example
 - $U(bypass) = \frac{5}{11}$
 - U(stent) = $\frac{7}{11}$
 - $U(drugs) = \frac{3}{11}$

Factual Outcome

Counterfactual Outcomes



Assignment Mechanism

- Probabilistic Treatment Assignment
 - For patient i: $\pi_0(Y_i = y | x_i)$
 - Selection Bias
- Inverse Propensity Score Estimator

$$- \widehat{U}_{ips}(y) = \frac{1}{n} \sum_{i} \frac{\mathbb{I}\{y_i = y\}}{p_i} \delta(x_i, y_i)$$

- Propensity: $p_i = \pi_0(Y_i = y_i | x_i)$
- Unbiased: $E[\widehat{U}(y)]=U(y)$, if $\pi_0(Y_i=y|x_i)>0$ for all i
- Example

$$- \widehat{U}(drugs) = \frac{1}{11} \left(\frac{1}{0.8} + \frac{1}{0.7} + \frac{1}{0.8} + \frac{0}{0.1} \right)$$
$$= 0.36 < 0.75$$

$\pi_0(Y_i = y x_i)$		
0.3	0.6	0.1
0.5	0.4	0.1
0.1	0.1	8.0
0.6	0.3	0.1
0.2	0.5	0.7
0.7	0.2	0.1
0.1	0.1	8.0
0.1	8.0	0.1
0.3	0.3	0.4
0.3	0.6	0.1
-0.4	0.4	0.2

Interventional vs Observational

- Interventional Controlled Experiment
 - Assignment Mechanism under our control
 - Propensities $p_i = \pi_0(Y_i = y_i | x_i)$ are known by design
 - Requirement: $\forall y : \pi_0(Y_i = y | x_i) > 0$ (probabilistic)
- Observational Study
 - Assignment Mechanism not under our control
 - Propensities p_i need to be estimated
 - Estimate $\hat{\pi}_0(Y_i|z_i) = \pi_0(Y_i|x_i)$ based on features z_i
 - Requirement: $\hat{\pi}_0(Y_i|z_i) = \hat{\pi}_0(Y_i|\delta_i,z_i)$ (unconfounded)

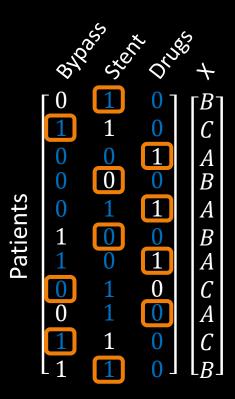
Conditional Treatment Policies

- Policy (deterministic)
 - Context x_i describing patient
 - Pick treatment y_i based on x_i : $y_i = \pi(x_i)$
 - Example policy:
 - $\pi(A) = drugs, \pi(B) = stent, \pi(C) = bypass$
- Average Treatment Effect

$$-U(\pi) = \frac{1}{n} \sum_{i} \delta(x_i, \pi(x_i))$$

IPS Estimator

$$- \widehat{U}_{ips}(\pi) = \frac{1}{n} \sum_{i} \frac{\mathbb{I}\{y_i = \pi(x_i)\}}{p_i} \delta(x_i, y_i)$$



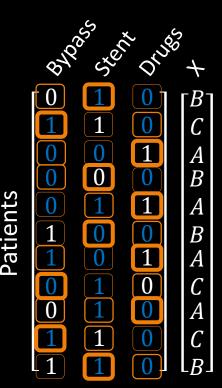
Stochastic Treatment Policies

- Policy (stochastic)
 - Context x_i describing patient
 - Pick treatment y based on x_i : $\pi(Y|x_i)$
- Note
 - Assignment Mechanism is a stochastic policy as well!
- Average Treatment Effect

$$-U(\pi) = \frac{1}{n} \sum_{i} \sum_{y} \delta(x_i, y) \pi(y | x_i)$$

IPS Estimator

$$- \widehat{U}(\pi) = \frac{1}{n} \sum_{i} \frac{\pi(y_i|x_i)}{p_i} \delta(x_i, y_i)$$



Counterfactual Model = Logs

Context x_i

Treatment y_i

Outcome δ_i

Recorded in

Propensities p_i

New Policy π

T-effect $U(\pi)$

Average quality of new policy.

Evaluation: Outline

- Evaluating Online Metrics Offline
 - A/B Testing (on-policy)
 - → Counterfactual estimation from logs (off-policy)
- Approach 1: "Model the world"
 - Estimation via reward prediction
- Approach 2: "Model the bias"
 - Counterfactual Model
 - Inverse propensity scoring (IPS) estimator

System Evaluation via Inverse Propensity Score Weighting

Definition [IPS Utility Estimator]:

Given
$$S = ((x_1, y_1, \delta_1), \dots, (x_n, y_n, \delta_n))$$
 collected under π_0 ,

$$\widehat{U}_{ips}(\pi) = \frac{1}{n} \sum_{i=1}^{n} \delta_i \frac{\pi(y_i|x_i)}{\pi_0(y_i|x_i)}$$
Propensity
$$p_i$$

 \rightarrow Unbiased estimate of utility for any π , if propensity nonzero whenever $\pi(y_i|x_i) > 0$.

Note:

If
$$\pi = \pi_0$$
, then online A/B Test with $\widehat{U}_{ips}(\pi_0) = \frac{1}{n} \sum_i \delta_i$
 \rightarrow Off-policy vs. On-policy estimation.

Illustration of IPS

IPS Estimator:

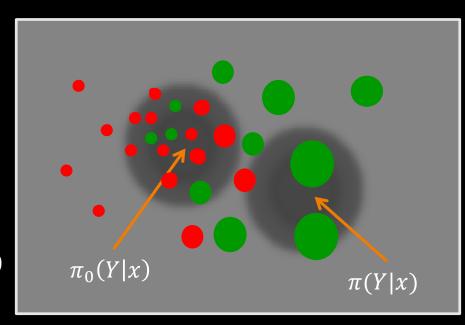
$$\widehat{U}_{IPS}(\pi) = \frac{1}{n} \sum_{i} \frac{\pi(y_i|x_i)}{\pi_0(y_i|x_i)} \delta_i$$

Unbiased:

then

If $\forall x, y : \pi(y|x)P(x) > 0 \to \pi_0(y|x) > 0$

$$\mathrm{E}\big[\widehat{U}_{IPS}(\pi)\big] = U(\pi)$$



IPS Estimator is Unbiased

$$E[\widehat{U}_{IPS}(\pi)] = \frac{1}{n} \sum_{x,y} \dots \sum_{x,y} \left[\sum_{i} \frac{\pi(y_i|x_i)}{\pi_0(y_i|x_i)} \delta(x_i, y_i) \right] \pi_0(y_1|x_1) \dots \pi_0(y_n|x_n) P(x_1) \dots P(x_n)$$

independent
$$= \frac{1}{n} \sum_{x_1, y_1} \pi_0(y_1 | x_1) P(x_1) \dots \sum_{x_n, y_n} \pi_0(y_n | x_n) P(x_n) \left[\sum_i \frac{\pi(y_i | x_i)}{\pi_0(y_i | x_i)} \delta(x_i, y_i) \right]$$

$$= \frac{1}{n} \sum_{i} \sum_{x_{i}, y_{i}} \pi_{0}(y_{1}|x_{1}) P(x_{1}) \dots \sum_{x_{i}, y_{i}} \pi_{0}(y_{n}|x_{n}) P(x_{n}) \left[\frac{\pi(y_{i}|x_{i})}{\pi_{0}(y_{i}|x_{i})} \delta(x_{i}, y_{i}) \right]$$

marginal

$$= \frac{1}{n} \sum_{i} \sum_{x_{i}, y_{i}} \pi_{0}(y_{i}|x_{i}) P(x_{i}) \left[\frac{\pi(y_{i}|x_{i})}{\pi_{0}(y_{i}|x_{i})} \delta(x_{i}, y_{i}) \right]$$

full support
$$= \frac{1}{n} \sum_{i} \sum_{x_i, y_i} P(x_i) \pi(y_i | x_i) \delta(x_i, y_i) = \frac{1}{n} \sum_{i} U(\pi) = U(\pi)$$
 identical x,y

Counterfactual Policy Evaluation

- Controlled Experiment Setting:
 - Log data: $D = ((x_1, y_1, \delta_1, p_1), ..., (x_n, y_n, \delta_n, p_n))$
- Observational Setting:
 - Log data: $D = ((x_1, y_1, \delta_1, z_1), ..., (x_n, y_n, \delta_n, z_n))$
 - Estimate propensities: $p_i = P(y_i|x_i,z_i)$ based on x_i and other confounders z_i
- \rightarrow Goal: Estimate average treatment effect of new policy π .
 - IPS Estimator

$$\widehat{U}(\pi) = \frac{1}{n} \sum_{i} \delta_{i} \frac{\pi(y_{i}|x_{i})}{p_{i}}$$

or many others.

Evaluation: Summary

- Offline Evaluation of Online Metrics
 - A/B Testing (on-policy)
 - → Counterfactual estimation from logs (off-policy)
- Approach 1: "Model the world"
 - Estimation via reward prediction
 - Pro: low variance
 - Con: model mismatch can lead to high bias
- Approach 2: "Model the bias"
 - Counterfactual Model
 - Inverse propensity scoring (IPS) estimator
 - Pro: unbiased for known propensities
 - Con: large variance

From Evaluation to Learning

Setting: Batch Learning from Bandit Feedback (BLBF)

- "Model the World" Learning:
 - − Learn: $\hat{\delta}$: $x \times y \rightarrow \Re$
 - Derive Policy:

$$\pi(y|x) = \underset{y'}{\operatorname{argmin}} [\hat{\delta}(x, y')]$$

- "Model the Bias" Learning:
 - Find policy that optimizes IPS training error

$$\pi = \underset{\pi'}{\operatorname{argmin}} \left[\sum_{i} \frac{\pi'(y_i|x_i)}{\pi_0(y_i|x_i)} \delta_i \right]$$