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Machine	Learning	for	
Intelligent	Systems

Instructors:	Nika	Haghtalab (this	time)	and	Thorsten	Joachims

Lecture	24:	Boosting

Reading:	UML	10-10.3
Optional	Readings:	Schapire’s survey	and	tutorial
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Fundamental	Question

I	want	a	learning	algorithm	that	for	any	distribution	𝑃 learns	an	

excellent classifier	ℎ#$%&'( such	that	𝑒𝑟𝑟+ ℎ#$%&'( ≤ 0.01.

I’m	given	a	learning	algorithm	𝐴 that	for	any	distribution	𝐷 returns	

a	not-too-terrible classifier	ℎ2345 such	that	𝑒𝑟𝑟6 ℎ2345 ≤ 0.49.

Can	I	use	this	algorithm	𝐴 to	find	ℎ#$%&'( ,	

𝑒𝑟𝑟+ ℎ#$%&'( ≤ 0.01?
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Strong	versus	Weak	Learning
A	learning	algorithm	for	PAC	learning.
For	every distribution	𝑃 and	every 𝜖,	a	strong	learner	can	return	
a	classifier	ℎ such	that	𝑒𝑟𝑟+ ℎ ≤ 𝜖.	

Strong	Learner

Error	of	random	guessing:	For	any	distribution	𝑃,	ignore	𝑃 and
• for	each	𝑥 predict	+1 or	−1 ,	with	probability	50-50.
• What’s	the	error?
• Exactly	0.5

Better	than	random	guessing.
For	every distribution	𝑃 and	some	𝛾 > 0,	aweak	Learner	returns	
a	classifier	ℎ such	that	𝑒𝑟𝑟+ ℎ ≤ @

A
− 𝛾.	

Weak	Learner

With	probability	1−𝛿

With	probability	1−𝛿
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Boosting
Is	there	a	boosting algorithm	that	turns	a	
weak	learner	into	a	strong	learner?

Yes!	
There	is	boosting	algorithm	that	uses	a	weak	
learner on	an	adaptively	designed	polynomial-size	
sequence	of	distributions	and	strong	learns.

Michael	Kearns Leslie	Valiant

Robert	Schapire

Weak	Learning	=	Strong	Learning
Yoav	Fruend
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Warmup
Suppose	our	weak	learner	knows	when	it	doesn’t	know!
• ℎ: 𝑥 → +1,−1,Not sure .
• On	at	most	1 − 𝜖′ fraction	of	the	data,	it	can	say	“Not	sure”.
• On	the	fraction	of	the	data	that	it	is	sure,	it	makes	𝜖 error.
• Leads	to	a	weak	learner,	if	“Not	sure”	à randomly	guess:

𝑒𝑟𝑟+ N ≤ @
A
1 − 𝜖O + 𝜖𝜖O ≤ @

A
− 𝛾 for	𝛾 = 𝜖O @

A
− 𝜖 .

Boosting:
• Start	with	a	weak	learner.
• Boost	by	focusing	the	distribution	on	instances	the	previous	
learner	wasn’t	sure	about.
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Warmup	Analysis
Boost	by	a	decision	list:	
• Train	ℎQ on	𝑃Q. Let	𝑃QR@ ← 𝑃Q|{𝑥: ℎQ 𝑥 = “𝑁𝑜𝑡 𝑠𝑢𝑟𝑒”}.	
• Repeat	until	the	total	prob.	of	the	“Not	sure”	region	is	𝜖.
• Total	error	at	most	2𝜖.

• It	only	takes	𝑇 = @
`a
ln(@

`
) rounds:	 1 − 𝜖O f ≤ exp −𝜖O𝑇 ≤ 𝜖.

ℎ@ ℎA ℎi
𝑁𝑜𝑡 𝑠𝑢𝑟𝑒

ℎ@(𝑥)

𝑁𝑜𝑡 𝑠𝑢𝑟𝑒

ℎA(𝑥)

𝑁𝑜𝑡 𝑠𝑢𝑟𝑒
ℎf

𝑁𝑜𝑡 𝑠𝑢𝑟𝑒

ℎf(𝑥)

Random	guess

ℎi(𝑥)

…

Not	sure	≤ 𝜖Error	on	the	sample	it’s	sure	about:	≤ 𝜖
Added	after	class:	reason	for	the	above.	Conditioned	on	being	sure,	we	are	wrong	with	
prob.	≤ 𝜖.	So,	the	total	probability	is≤ 𝜖.	
Another	way	to	see	this	is,	prob.	of	error	after	each	round:	∑$k@f 𝜖×𝜖O 1−𝜖O $m@ ≤ 𝜖.

Pr
o
[ℎ$ 𝑥 is sure]Pr

o
ℎ$ 𝑥 iswrong | ℎ$ 𝑥 is sure ]
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A	Recipe	for	Boosting

Input:	 𝑥@, 𝑦@ ,… , (𝑥w, 𝑦w) and	a	weak	learning	algorithm.

Let	𝑃@ 𝑥Q = @
w
for	all	𝑖.	i.e.,	uniform	distribution	over	samples.

For	𝑡 = 1,… , 𝑇
• Learn	a	weak	classifier	ℎ$ ∈ 𝐻 on	distribution	𝑃$.
• Construct	𝑃$R@ that	has	higher	weight	compared	to	𝑃 on	
instance	where	ℎ@,… , ℎ$ didn’t	perform	well.

Output	the	final	hypothesis

ℎ{Q'4| 𝑥 = sign }
$k@

f

𝛼$ ℎ$(𝑥)

Boosting	Recipe

Specify	these	weights
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Constructing 𝑃$R@
Increase	the	weight	of	𝑥Q if	ℎ$ made	a	mistake	on	it.	Decrease	the	
weight	if	ℎ$ was	correct.
• Don’t	want	to	cut	the	weight	to	0

à ℎ$R@ could	be	arbitrarily	bad	on	where	ℎ$ was	good.
à The	majority	vote	could	be	bad.

• Change	the	weights,	so	that	ℎ$ would	have	head	error	exactly	0.5

𝑃$ 𝒉𝒕 right𝒉𝒕 wrong

𝒉𝒕 right𝒉𝒕 wrong

𝒉𝒕 right𝒉𝒕 wrong

Change	the	weights,	
without	normalizing

𝑃$R@Normalize

Use	error	ℎ$ on	𝑃$
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Constructing 𝑃$R@
Let	𝜖$ = Pr

o�∼+�
ℎ$ 𝑥Q ≠ 𝑦Q and	let	𝛼$ =

@
A
ln @m`�

`�
.	Let

𝑃$R@ 𝑥Q = +� o� ��� m�� �� N� o�
��

Where	𝑍$ = ∑Q 𝑃$ 𝑥Q exp(−𝛼$ 𝑦Q ℎ$(𝑥Q)) is	the	normalization	factor.

Boosting	Recipe

𝑃$R@ 𝑥Q =

+� o�
��

exp(−𝛼$) if	𝑦Q = ℎ$(𝑥Q)

+� o�
��

exp(+𝛼$) if	𝑦Q ≠ ℎ$(𝑥Q)

Weight	on	ℎ$ 𝑥Q ≠ 𝑦Q:	
@
��
𝜖$ exp

@
A ln

@m`�
`�

= @
��
𝜖$

@m`�
`�

@/A
= `� @m`�

��

Weight	on	ℎ$ 𝑥Q = 𝑦Q:	 @
��
(1−𝜖$) exp −@

A
ln @m`�

`�
= @

��
(1−𝜖$)

`�
@m`�

@/A
= `� @m`�

��

Weight	of	𝑃$ on	correct points

Weight	of	𝑃$ on	incorrect points
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Adaptive	Boosting
Input:	 𝑥@, 𝑦@ ,… , (𝑥w, 𝑦w) and	a	weak	learning	algorithm.

Let	𝑃@ 𝑥Q = @
w
for	all	𝑖.	i.e.,	uniform	distribution	over	samples.

For	𝑡 = 1,… , 𝑇
• Learn	a	weak	classifier	ℎ$ ∈ 𝐻 on	distribution	𝑃$.

• Let 𝜖$ = Pr
o�∼+�

ℎ$ 𝑥Q ≠ 𝑦Q and	let	𝛼$ =
@
A
ln @m`�

`�
.

• 𝑃$R@ 𝑥Q = +� o� ��� m�� �� N� o�
��

Output	the	final	hypothesis

ℎ{Q'4| 𝑥 = sign }
$k@

f

𝛼$ ℎ$(𝑥)

AdaBoost	Algorithm
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Example

Assume	that	the	weak	learner	return	vertical	or	horizontal	half-
spaces	(that’s	the	𝐻).	

Example	from	SchapireNeurIPS’s 03	Tutorial
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Round	1
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Round	2
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Round	3
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The	combined	classifier

ℎ"#$%& = ()*+ 0.42 																								+0.65																					 +0.92																													

ℎ{Q'4| = 𝑠𝑖𝑔𝑛 0.42 +0.65 +0.92

ℎ"#$%& = ()*+ 0.42 																								+0.65																					 +0.92																													+0.92+0.65

=
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Bounding	the	Sample	Error

Let	𝛾$ =
@
A
− 𝜖$.	For	any	𝑇,	ℎ{Q'4| 𝑥 = 𝑠𝑖𝑔𝑛 ∑$k@f 𝛼$ℎ$ 𝑥 has	

training	error

𝑒𝑟𝑟� ℎ{Q'4| ≤ exp −2}
$k@

f

𝛾$A

So,	for	weak	learners	where	𝛾$ > 𝛾,	and	T = O @
��
ln(@

`
) we	have	

𝑒𝑟𝑟� ℎ{Q'4| ≤ 𝜖.

Theorem:	AdaBoost’s	training	error

With	probability	1−𝛿

Ada(ptive)Boost:
• Adaptive:	We	don’t	need	to	know	𝛾 or	𝑇 before	we	start.
• Can	adapt	to	𝛾$.
• Automatically	better	when	𝛾$ ≫ 𝛾.
• Practical	algorithm.
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Generalization	Error
We	gave	a	guarantee	that	the	sample	error	is	at	most	𝑒𝑟𝑟� 𝐻 ≤ 𝜖.	
What	about	generalization?
• ℎ{Q'4| is	a	combination	of	𝑇 hypothesis	ℎ@,… , ℎf ∈ 𝐻.
• ℎ{Q'4| ∉ 𝐻 possibly,	but	it’s	still	structured.
• Recall	from	Homework	3

à Combination	of	𝑇 hypothesis	from	𝐻 has	a	bounded	Growth	
function.

à Roughly	speaking: This	means	ℎ{Q'4| comes	from	a	class	of	
with	VC	dimension	 �𝑂(𝑇 VCDim(𝐻)).

When	𝑆 has  Ω ¢£6Qw(¤)
��`

many	samples,	then	𝑒𝑟𝑟+ ℎ{Q'4| ≤ 𝜖.

Theorem:	AdaBoost’s	true	error
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Better	Generalization	Guarantee
Last	slide:		VC	dimension	 �𝑂(𝑇 VCDim(𝐻))
àKeep	𝑇 small.	As	𝑇 increases	there	is	a	chance	of	overfitting.

True	error

Training	error

Model	complexity

Our	first	guess! Actual	run	of	AdaBoost.

Cool	theory	for	proving	why	AdaBoost	doesn’t	overfit.
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Schapire and	Fruend also	gave	online	learning	algorithms	
(last	lecture).
Connection	between	boosting	and	regret	minimization

Boosting	&	Regret	Minimization

Robert	Schapire

Yoav	Fruend

Optional	Material

𝑥@, 𝑥A , 𝑥i … , 𝑥w

ℎ@
ℎA
ℎi
⋮

ℎ|¤|

𝑀Q§

For	every	distribution	𝑃 over	the	columns,	there	is	a	row	with	expected	
payoff	≥ @

A
+ 𝛾 .

èBoosting:	Distribution	𝑄 over	ℎ@, ℎA , … that	is	≥ @
A
+ 𝛾 for	every	𝑥Q .

èRegret	minimization	against	an	adversary	who	is	best	responding	
results	in	the	sequence	ℎ@, ℎA, …

𝑀Q§ = ±1depending	on	correctness.
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Meta	learning	algorithms	that	call	multiple	algorithms	
to	improve	learning	performance.

Ensemble	Methods

ℎ3'#3w«|3 𝑥 = sign }
$k@

f

𝛼$ ℎ$(𝑥)

Boosting:	Take	one	sample	set	𝑆,	learn	ℎ$ for	different	weight	on	
these	samples.	Take	𝛼$-weighted	majority	vote.
à Improve	training	error	of	the	weak	classifiers	ℎ$’s.
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Bagging
Even	if	the	training	error	is	already	good	(bias)	,	can	we	decrease	the	
variance?	

ℎ«4((Q'( 𝑥 = sign }
$k@

f

𝛼$ ℎ$(𝑥)

𝛼$ = 1 ℎ$ trained	on	subsamples

Input:	S = { 𝑥@, 𝑦@ ,… , 𝑥w, 𝑦w } and	any	learning	algorithm.
For	𝑡 = 1,… , 𝑇
• 𝑆$ = sample	with	replacement	from	𝑆.
• ℎ$ = train	on	the	sample	set	𝑆$.
Return sign ∑$k@

f ℎ$(𝑥)

Bagging	(Bootstrap	Aggregating)
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Enjoy	the

Happy	Thanksgiving!
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