Machine Learning for Intelligent Systems

Lecture 24: Boosting

Reading: UML 10-10.3 Optional Readings: Schapire's survey and tutorial

Instructors: Nika Haghtalab (this time) and Thorsten Joachims

Fundamental Question

I want a learning algorithm that for any distribution *P* learns an **excellent** classifier h_{strong} such that $err_P(h_{strong}) \leq 0.01$.

I'm given a learning algorithm *A* that for any distribution *D* returns a **not-too-terrible** classifier h_{weak} such that $err_D(h_{weak}) \le 0.49$.

Can I use this algorithm A to find h_{strong} ,

 $err_P(h_{strong}) \leq 0.01?$

Strong versus Weak Learning

Strong Learner

A learning algorithm for PAC learning.

For **every** distribution *P* and **every** ϵ , a **strong learner** can return a classifier *h* such that $err_P(h) \leq \epsilon$. With probability $1 - \delta$

Error of random guessing: For any distribution P, ignore P and

- for each x predict +1 or -1, with probability 50-50.
- What's the error?
- Exactly 0.5

Weak LearnerBetter than random guessing.For every distribution P and some $\gamma > 0$, a weak Learner returnsa classifier h such that $err_P(h) \leq \frac{1}{2} - \gamma$.With probability $1 - \delta$

Boosting

Is there a **boosting** algorithm that turns a weak learner into a strong learner?

Robert Schapire

Yes!

There is boosting algorithm that uses a **weak learner** on an adaptively designed polynomial-size sequence of distributions and **strong learns.**

Weak Learning = Strong Learning

Michael Kearns Les

Leslie Valiant

Warmup

Suppose our weak learner knows when it doesn't know!

- $h: x \rightarrow \{+1, -1, \text{Not sure}\}.$
- On at most $1 \epsilon'$ fraction of the data, it can say "Not sure".
- On the fraction of the data that it is sure, it makes ϵ error.
- Leads to a weak learner, if "Not sure" \rightarrow randomly guess:

$$err_{P(h)} \leq \frac{1}{2}(1-\epsilon') + \epsilon\epsilon' \leq \frac{1}{2} - \gamma \qquad \text{for } \gamma = \epsilon'\left(\frac{1}{2} - \epsilon\right).$$

Boosting:

- Start with a weak learner.
- Boost by focusing the distribution on instances the previous learner wasn't sure about.

Warmup Analysis

Boost by a decision list:

- Train h_i on P_i . Let $P_{i+1} \leftarrow P_i | \{x: h_i(x) = "Not sure"\}$.
- Repeat until the total prob. of the "Not sure" region is ϵ .
- Total error at most 2ϵ .
- It only takes $T = \frac{1}{\epsilon'} \ln(\frac{1}{\epsilon})$ rounds: $(1 \epsilon')^T \le \exp(-\epsilon' T) \le \epsilon$.

Error on the sample it's sure about: $\leq \epsilon$

Not sure $\leq \epsilon$

Added after class: reason for the above. Conditioned on being sure, we are wrong with prob. $\leq \epsilon$. So, the total probability is $\leq \epsilon$. Another way to see this is, prob. of error after each round: $\sum_{t=1}^{T} \epsilon \times \epsilon' (1 - \epsilon')^{t-1} \leq \epsilon$. $\Pr[h_t(x) \text{ is wrong } | h_t(x) \text{ is sure}]$

A Recipe for Boosting

Boosting Recipe

Input: $(x_1, y_1), \dots, (x_m, y_m)$ and a weak learning algorithm.

Let $P_1(x_i) = \frac{1}{m}$ for all *i*. i.e., uniform distribution over samples. For t = 1, ..., T

- Learn a weak classifier $h_t \in H$ on distribution P_t .
- Construct P_{t+1} that has **higher weight** compared to P on instance where $h_1, ..., h_t$ didn't perform well.

Output the final hypothesis

$$h_{final}(x) = \operatorname{sign}\left(\sum_{t=1}^{T} \alpha_t h_t(x)\right)$$

Constructing P_{t+1}

Increase the weight of x_i if h_t made a mistake on it. Decrease the weight if h_t was correct.

• Don't want to cut the weight to 0

 $\rightarrow h_{t+1}$ could be *arbitrarily bad* on where h_t was good.

 \rightarrow The majority vote could be bad.

• Change the weights, so that h_t would have head error exactly 0.5

Constructing P_{t+1}

Constructing the next distribution

Let
$$\epsilon_t = \Pr_{x_i \sim P_t} [h_t(x_i) \neq y_i]$$
 and let $\alpha_t = \frac{1}{2} \ln \left(\frac{1-\epsilon_t}{\epsilon_t}\right)$. Let
 $P_{t+1}(x_i) = \frac{P_t(x_i) \exp(-\alpha_t y_i h_t(x_i))}{Z_t}$
Where $Z_t = \sum_i P_t(x_i) \exp(-\alpha_t y_i h_t(x_i))$ is the normalization factor.

$$P_{t+1}(x_i) = \begin{cases} \frac{P_t(x_i)}{Z_t} \exp(-\alpha_t) & \text{if } y_i = h_t(x_i) \\ \frac{P_t(x_i)}{Z_t} \exp(+\alpha_t) & \text{if } y_i \neq h_t(x_i) \end{cases}$$

Weight of P_t on **correct** points Weight on $h_t(x_i) = y_i$: $\frac{1}{Z_t}(1 - \epsilon_t) \exp\left(-\frac{1}{2}\ln\left(\frac{1 - \epsilon_t}{\epsilon_t}\right)\right) = \frac{1}{Z_t}(1 - \epsilon_t)\left(\frac{\epsilon_t}{1 - \epsilon_t}\right)^{1/2} = \frac{\sqrt{\epsilon_t(1 - \epsilon_t)}}{Z_t}$

Weight of P_t on **incorrect** points Weight on $h_t(x_i) \neq y_i$: $\frac{1}{Z_t} \epsilon_t \exp\left(\frac{1}{2}\ln\left(\frac{1-\epsilon_t}{\epsilon_t}\right)\right) = \frac{1}{Z_t} \epsilon_t \left(\frac{1-\epsilon_t}{\epsilon_t}\right)^{1/2} = \frac{\sqrt{\epsilon_t(1-\epsilon_t)}}{Z_t}$

Adaptive Boosting

AdaBoost Algorithm

Input: $(x_1, y_1), \dots, (x_m, y_m)$ and a weak learning algorithm.

Let $P_1(x_i) = \frac{1}{m}$ for all *i*. i.e., uniform distribution over samples. For t = 1, ..., T

• Learn a weak classifier $h_t \in H$ on distribution P_t .

• Let
$$\epsilon_t = \Pr_{x_i \sim P_t} [h_t(x_i) \neq y_i]$$
 and let $\alpha_t = \frac{1}{2} \ln \left(\frac{1 - \epsilon_t}{\epsilon_t} \right)$.
• $P_{t+1}(x_i) = \frac{P_t(x_i) \exp(-\alpha_t y_i h_t(x_i))}{Z_t}$

Output the final hypothesis

$$h_{final}(x) = \operatorname{sign}\left(\sum_{t=1}^{T} \alpha_t h_t(x)\right)$$

Example

Assume that the weak learner return vertical or horizontal halfspaces (that's the H).

Example from Schapire NeurIPS's 03 Tutorial

Round 1

$$\epsilon_{1} = 0.30$$

 $\alpha_{1} = 0.42$

Round 2

Round 3

 $\epsilon_3 = 0.14$ $\alpha_3 = 0.92$

The combined classifier

Bounding the Sample Error

Theorem: AdaBoost's training error Let $\gamma_t = \frac{1}{2} - \epsilon_t$. For any *T*, $h_{final}(x) = sign\left(\sum_{t=1}^T \alpha_t h_t(x)\right)$ has training error $err_s(h_{final}) \le \exp\left(-2\sum_{t=1}^T \gamma_t^2\right)$ So, for weak learners where $\gamma_t > \gamma$, and $T = O\left(\frac{1}{\gamma^2} \ln(\frac{1}{\epsilon})\right)$ we have $err_s(h_{final}) \le \epsilon$.

Ada(ptive)Boost:

- Adaptive: We don't need to know γ or *T* before we start.
- Can adapt to γ_t .
- Automatically better when $\gamma_t \gg \gamma$.
- Practical algorithm.

Generalization Error

We gave a guarantee that the sample error is at most $err_S(H) \leq \epsilon$. What about generalization?

- h_{final} is a combination of T hypothesis $h_1, \dots, h_T \in H$.
- $h_{final} \notin H$ possibly, but it's still structured.
- Recall from Homework 3
 - → Combination of *T* hypothesis from *H* has a bounded Growth function.
 - → **Roughly speaking:** This means h_{final} comes from a class of with VC dimension $\tilde{O}(T \text{ VCDim}(H))$.

Theorem: AdaBoost's true error

When *S* has $\widetilde{\Omega}\left(\frac{VCDim(H)}{\gamma^2 \epsilon}\right)$ many samples, then $err_P(h_{final}) \leq \epsilon$.

Better Generalization Guarantee

Last slide: VC dimension $\tilde{O}(T \text{ VCDim}(H))$

 \rightarrow Keep *T* small. As *T* increases there is a chance of overfitting.

Our first guess!

Actual run of AdaBoost.

Cool theory for proving why AdaBoost doesn't overfit.

Boosting & Regret Minimization

Schapire and Fruend also gave online learning algorithms (last lecture).

Connection between boosting and regret minimization

For every distribution *P* over the columns, there is a row with expected payoff $\geq \frac{1}{2} + \gamma$.

- → **Boosting:** Distribution *Q* over $h_1, h_2, ...$ that is $\geq \frac{1}{2} + \gamma$ for every x_i .
- → Regret minimization against an adversary who is best responding results in the sequence $h_1, h_2, ...$

Optional Material

Ensemble Methods

Meta learning algorithms that call multiple algorithms to improve learning performance.

$$h_{ensemble}(x) = \operatorname{sign}\left(\sum_{t=1}^{T} \alpha_t h_t(x)\right)$$

Boosting: Take one sample set *S*, learn h_t for different weight on these samples. Take α_t -weighted majority vote. \rightarrow Improve training error of the weak classifiers h_t 's.

Bagging

Even if the training error is already good (bias), can we decrease the variance? $\alpha_t = 1$, h_t trained on subsamples

$$h_{bagging}(x) = \operatorname{sign}\left(\sum_{t=1}^{T} \alpha_t h_t(x)\right)$$

Bagging (Bootstrap Aggregating) Input: $S = \{(x_1, y_1), ..., (x_m, y_m)\}$ and any learning algorithm. For t = 1, ..., T

- S_t = sample with replacement from *S*.
- h_t = train on the sample set S_t .

Return sign $(\sum_{t=1}^{T} h_t(x))$

Happy Thanksgiving!