
Machine	Learning	for	
Intelligent	Systems

Instructors:	Nika	Haghtalab (this	time)	and	Thorsten	Joachims

Lecture	24:	Boosting

Reading:	UML	10-10.3
Optional	Readings:	Schapire’s survey	and	tutorial



Fundamental	Question

I	want	a	learning	algorithm	that	for	any	distribution	𝑃 learns	an	

excellent classifier	ℎ#$%&'( such	that	𝑒𝑟𝑟+ ℎ#$%&'( ≤ 0.01.

I’m	given	a	learning	algorithm	𝐴 that	for	any	distribution	𝐷 returns	

a	not-too-terrible classifier	ℎ2345 such	that	𝑒𝑟𝑟6 ℎ2345 ≤ 0.49.

Can	I	use	this	algorithm	𝐴 to	find	ℎ#$%&'( ,	

𝑒𝑟𝑟+ ℎ#$%&'( ≤ 0.01?



Strong	versus	Weak	Learning

A	learning	algorithm	for	PAC	learning.
For	every distribution	𝑃 and	every 𝜖,	a	strong	learner	can	return	
a	classifier	ℎ such	that	𝑒𝑟𝑟+ ℎ ≤ 𝜖.	

Strong	Learner

Error	of	random	guessing:	For	any	distribution	𝑃,	ignore	𝑃 and
• for	each	𝑥 predict	+1 or	−1 ,	with	probability	50-50.
• What’s	the	error?
• Exactly	0.5

Better	than	random	guessing.
For	every distribution	𝑃 and	some	𝛾 > 0,	aweak	Learner	returns	
a	classifier	ℎ such	that	𝑒𝑟𝑟+ ℎ ≤ @

A
− 𝛾.	

Weak	Learner

With	probability	1 − 𝛿

With	probability	1 − 𝛿



Boosting
Is	there	a	boosting algorithm	that	turns	a	
weak	learner	into	a	strong	learner?

Yes!	
There	is	boosting	algorithm	that	uses	a	weak	
learner on	an	adaptively	designed	polynomial-size	
sequence	of	distributions	and	strong	learns.

Michael	Kearns Leslie	Valiant

Robert	Schapire

Weak	Learning	=	Strong	Learning
Yoav	Fruend



Warmup
Suppose	our	weak	learner	knows	when	it	doesn’t	know!
• ℎ: 𝑥 → +1,−1, Not sure .
• On	at	most	1 − 𝜖′ fraction	of	the	data,	it	can	say	“Not	sure”.
• On	the	fraction	of	the	data	that	it	is	sure,	it	makes	𝜖 error.
• Leads	to	a	weak	learner,	if	“Not	sure”	à randomly	guess:

𝑒𝑟𝑟+ N ≤ @
A
1 − 𝜖O + 𝜖𝜖O ≤ @

A
− 𝛾 for	𝛾 = 𝜖O @

A
− 𝜖 .

Boosting:
• Start	with	a	weak	learner.
• Boost	by	focusing	the	distribution	on	instances	the	previous	
learner	wasn’t	sure	about.



Warmup	Analysis
Boost	by	a	decision	list:	
• Train	ℎQ on	𝑃Q. Let	𝑃QR@ ← 𝑃Q|{𝑥: ℎQ 𝑥 = “𝑁𝑜𝑡 𝑠𝑢𝑟𝑒”}.	
• Repeat	until	the	total	prob.	of	the	“Not	sure”	region	is	𝜖.
• Total	error	at	most	2𝜖.

• It	only	takes	𝑇 = @
`a
ln(@

`
) rounds:	 1 − 𝜖O f ≤ exp −𝜖O𝑇 ≤ 𝜖.

ℎ@ ℎA ℎi
𝑁𝑜𝑡 𝑠𝑢𝑟𝑒

ℎ@(𝑥)

𝑁𝑜𝑡 𝑠𝑢𝑟𝑒

ℎA(𝑥)

𝑁𝑜𝑡 𝑠𝑢𝑟𝑒
ℎf

𝑁𝑜𝑡 𝑠𝑢𝑟𝑒

ℎf(𝑥)

Random	guess

ℎi(𝑥)

…

Not	sure	≤ 𝜖Error	on	the	sample	it’s	sure	about:	≤ 𝜖
Added	after	class:	reason	for	the	above.	Conditioned	on	being	sure,	we	are	wrong	with	
prob.	≤ 𝜖.	So,	the	total	probability	is ≤ 𝜖.	
Another	way	to	see	this	is,	prob.	of	error	after	each	round:	∑$k@f 𝜖 ×𝜖O 1 − 𝜖O $m@ ≤ 𝜖.

Pr
o
[ℎ$ 𝑥 is sure]Pr

o
ℎ$ 𝑥 is wrong | ℎ$ 𝑥 is sure ]



A	Recipe	for	Boosting

Input:	 𝑥@, 𝑦@ , … , (𝑥w, 𝑦w) and	a	weak	learning	algorithm.

Let	𝑃@ 𝑥Q = @
w
for	all	𝑖.	i.e.,	uniform	distribution	over	samples.

For	𝑡 = 1,… , 𝑇
• Learn	a	weak	classifier	ℎ$ ∈ 𝐻 on	distribution	𝑃$ .
• Construct	𝑃$R@ that	has	higher	weight	compared	to	𝑃 on	
instance	where	ℎ@, … , ℎ$ didn’t	perform	well.

Output	the	final	hypothesis

ℎ{Q'4| 𝑥 = sign }
$k@

f

𝛼$ ℎ$(𝑥)

Boosting	Recipe

Specify	these	weights



Constructing 𝑃$R@
Increase	the	weight	of	𝑥Q if	ℎ$ made	a	mistake	on	it.	Decrease	the	
weight	if	ℎ$ was	correct.
• Don’t	want	to	cut	the	weight	to	0

à ℎ$R@ could	be	arbitrarily	bad	on	where	ℎ$ was	good.
à The	majority	vote	could	be	bad.

• Change	the	weights,	so	that	ℎ$ would	have	head	error	exactly	0.5

𝑃$ 𝒉𝒕 right𝒉𝒕 wrong

𝒉𝒕 right𝒉𝒕 wrong

𝒉𝒕 right𝒉𝒕 wrong

Change	the	weights,	
without	normalizing

𝑃$R@Normalize

Use	error	ℎ$ on	𝑃$



Constructing 𝑃$R@
Let	𝜖$ = Pr

o�∼+�
ℎ$ 𝑥Q ≠ 𝑦Q and	let	𝛼$ =

@
A
ln @m`�

`�
.	Let

𝑃$R@ 𝑥Q = +� o� ��� m�� �� N� o�
��

Where	𝑍$ = ∑Q 𝑃$ 𝑥Q exp(−𝛼$ 𝑦Q ℎ$(𝑥Q)) is	the	normalization	factor.

Constructing	the	next	distribution

𝑃$R@ 𝑥Q =

+� o�
��

exp(−𝛼$) if	𝑦Q = ℎ$(𝑥Q)

+� o�
��

exp(+𝛼$) if	𝑦Q ≠ ℎ$(𝑥Q)

Weight	on	ℎ$ 𝑥Q ≠ 𝑦Q:	
@
��
𝜖$ exp

@
A
ln @m`�

`�
= @

��
𝜖$

@m`�
`�

@/A
= `� @m`�

��

Weight	on	ℎ$ 𝑥Q = 𝑦Q:	 @
��
(1 − 𝜖$) exp − @

A
ln @m`�

`�
= @

��
(1 − 𝜖$)

`�
@m`�

@/A
= `� @m`�

��

Weight	of	𝑃$ on	correct points

Weight	of	𝑃$ on	incorrect points



Adaptive	Boosting
Input:	 𝑥@, 𝑦@ , … , (𝑥w, 𝑦w) and	a	weak	learning	algorithm.

Let	𝑃@ 𝑥Q = @
w
for	all	𝑖.	i.e.,	uniform	distribution	over	samples.

For	𝑡 = 1,… , 𝑇
• Learn	a	weak	classifier	ℎ$ ∈ 𝐻 on	distribution	𝑃$ .

• Let 𝜖$ = Pr
o�∼+�

ℎ$ 𝑥Q ≠ 𝑦Q and	let	𝛼$ =
@
A
ln @m`�

`�
.

• 𝑃$R@ 𝑥Q = +� o� ��� m�� �� N� o�
��

Output	the	final	hypothesis

ℎ{Q'4| 𝑥 = sign }
$k@

f

𝛼$ ℎ$(𝑥)

AdaBoost	Algorithm



Example

Assume	that	the	weak	learner	return	vertical	or	horizontal	half-
spaces	(that’s	the	𝐻).	

Example	from	Schapire NeurIPS’s 03	Tutorial



Round	1



Round	2



Round	3



The	combined	classifier

ℎ"#$%& = ()*+ 0.42 																								+0.65																					 +0.92																													ℎ"#$%& = ()*+ 0.42 																								+0.65																					 +0.92																													+0.92+0.65

=



Bounding	the	Sample	Error

Let	𝛾$ =
@
A
− 𝜖$ .	For	any	𝑇,	ℎ{Q'4| 𝑥 = 𝑠𝑖𝑔𝑛 ∑$k@f 𝛼$ℎ$ 𝑥 has	

training	error

𝑒𝑟𝑟� ℎ{Q'4| ≤ exp −2}
$k@

f

𝛾$A

So,	for	weak	learners	where	𝛾$ > 𝛾,	and	T = O @
��
ln(@

`
) we	have	

𝑒𝑟𝑟� ℎ{Q'4| ≤ 𝜖.

Theorem:	AdaBoost’s	training	error

Ada(ptive)Boost:
• Adaptive:	We	don’t	need	to	know	𝛾 or	𝑇 before	we	start.
• Can	adapt	to	𝛾$ .
• Automatically	better	when	𝛾$ ≫ 𝛾.
• Practical	algorithm.



Generalization	Error
We	gave	a	guarantee	that	the	sample	error	is	at	most	𝑒𝑟𝑟� 𝐻 ≤ 𝜖.	
What	about	generalization?
• ℎ{Q'4| is	a	combination	of	𝑇 hypothesis	ℎ@, … , ℎf ∈ 𝐻.
• ℎ{Q'4| ∉ 𝐻 possibly,	but	it’s	still	structured.
• Recall	from	Homework	3

à Combination	of	𝑇 hypothesis	from	𝐻 has	a	bounded	Growth	
function.

à Roughly	speaking: This	means	ℎ{Q'4| comes	from	a	class	of	
with	VC	dimension	 �𝑂(𝑇 VCDim(𝐻)).

When	𝑆 has  Ω ¢£6Qw(¤)
��`

many	samples,	then	𝑒𝑟𝑟+ ℎ{Q'4| ≤ 𝜖.

Theorem:	AdaBoost’s	true	error



Better	Generalization	Guarantee
Last	slide:		VC	dimension	 �𝑂(𝑇 VCDim(𝐻))
à Keep	𝑇 small.	As	𝑇 increases	there	is	a	chance	of	overfitting.

True	error

Training	error

Model	complexity

Our	first	guess! Actual	run	of	AdaBoost.

Cool	theory	for	proving	why	AdaBoost	doesn’t	overfit.



Schapire and	Fruend also	gave	online	learning	algorithms	
(last	lecture).
Connection	between	boosting	and	regret	minimization

Boosting	&	Regret	Minimization

Robert	Schapire

Yoav	Fruend

Optional	Material

𝑥@, 𝑥A , 𝑥i … , 𝑥w

ℎ@
ℎA
ℎi
⋮

ℎ|¤|

𝑀Q§

For	every	distribution	𝑃 over	the	columns,	there	is	a	row	with	expected	
payoff	≥ @

A
+ 𝛾 .

èBoosting:	Distribution	𝑄 over	ℎ@, ℎA, … that	is	≥
@
A
+ 𝛾 for	every	𝑥Q .

èRegret	minimization	against	an	adversary	who	is	best	responding	
results	in	the	sequence	ℎ@, ℎA, …

𝑀Q§ = ±1 depending	on	correctness.



Meta	learning	algorithms	that	call	multiple	algorithms	
to	improve	learning	performance.

Ensemble	Methods

ℎ3'#3w«|3 𝑥 = sign }
$k@

f

𝛼$ ℎ$(𝑥)

Boosting:	Take	one	sample	set	𝑆,	learn	ℎ$ for	different	weight	on	
these	samples.	Take	𝛼$-weighted	majority	vote.
à Improve	training	error	of	the	weak	classifiers	ℎ$’s.



Bagging
Even	if	the	training	error	is	already	good	(bias)	,	can	we	decrease	the	
variance?	

ℎ«4((Q'( 𝑥 = sign }
$k@

f

𝛼$ ℎ$(𝑥)

𝛼$ = 1 ℎ$ trained	on	subsamples

Input:	S = { 𝑥@, 𝑦@ , … , 𝑥w, 𝑦w } and	any	learning	algorithm.
For	𝑡 = 1,… , 𝑇
• 𝑆$ = sample	with	replacement	from	𝑆.
• ℎ$ = train	on	the	sample	set	𝑆$ .
Return sign ∑$k@f ℎ$(𝑥)

Bagging	(Bootstrap	Aggregating)



Enjoy	the

Happy	Thanksgiving!


