# Machine Learning for Intelligent Systems 

Lecture 23: Online Learning

Reading: UML 21 and Blum\&Mansour chapter

Instructors: Nika Haghtalab (this time) and Thorsten Joachims

## Statistical Learning Recap

## PAC learning:

- Data set $S$ of $m$ samples is drawn i.i.d. from distribution $P$.
- Using this data set we want to find $h_{S}$
- So, that $\operatorname{err}_{P}\left(h_{S}\right) \leq \min _{h \in H} \operatorname{err}_{P}(h)+\epsilon$
- It works if $m \geq \frac{c_{0}}{\epsilon^{2}}\left(\operatorname{VCDim}(H)+\ln \left(\frac{1}{\delta}\right)\right)$.


## Online Learning

The data might not be coming from a distribution:

- Today's data can depend on yesterday's data and decision.
- Environment is evolving over time in an unpredictable way.
- We don't want to make any assumptions on how the data evolves.
- We want to make decisions on any instance as soon as it arrives.

Sequence of data and learning tasks:

- On round $t$ we are given $x_{t}$ and unknown label $y_{t}=h^{*}\left(x_{t}\right)$ for a fixed $h^{*} \in H$.
- We predict $\widehat{y_{t}}$, after the prediction we see if we made a mistake or not.
- Goal: Bound the number of mistakes we make.


## Recall: Online Perceptron

## Theorem: Mistake Bound of Online Perceptron

Given a sequence of data $\left(\vec{x}_{1}, y_{1}\right),\left(\vec{x}_{2}, y_{2}\right), \ldots,\left(\vec{x}_{m}, y_{m}\right)$ one by one, with radius $R$ and margin $\gamma:=\min _{i \in S} \frac{y_{i}\left(\vec{w}^{*} \cdot \vec{x}_{i}\right)}{\left\|\vec{w}^{*}\right\|}$ for some $\vec{w}^{*}$. Online prediction: At each time use the current $\vec{w}$ to predict the label of incoming $\left(\vec{x}_{i}, y_{i}\right)$, update if needed.
Mistake Bound: The number of mistake that perceptron makes is at most $R^{2} / \gamma^{2}$.

## Mistake Bound Model

Mistake Bound

An algorithm Alg learns a hypothesis class $H$ if Alg make no more than $M$ mistakes on any sequence $\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right),\left(x_{3}, y_{3}\right), \ldots$ that is consistent with some $h^{*} \in H$.

Goal: Upper bounding the mistake bound.

## Example: 1-D thresholds (discrete)

Let $X=\{1, \ldots, n\}$ be the instance space. Let $H=\left\{h_{a} \mid a \in\{1, \ldots, n\}\right\}$ where $h_{a}(x)=1(x \geq a)$.

- $x^{-}$: The right-most instance labeled -1
- $x^{+}$: The left-most instance labeled +1

Any Alg can be forced to make $\geq \log _{2}(n)$ mistakes.
$\rightarrow$ Mistake bound is at least $\log _{2}(n)$.
There is a strategy that makes no more than $\log _{2}(n)$ mistakes.
$\rightarrow$ Use the algorithm that at any time

- Predict using $h_{a}($.$) for a$ halfway between $x^{-}$and $x^{+}$.
$\rightarrow$ On mistake: Distance between $x^{-}$and $x^{+}$is halved (or smaller)
- No more mistakes can be made when $\left|x^{-}-x^{+}\right|=1$.
$\underbrace{n \rightarrow \frac{n}{2} \rightarrow \frac{\mathrm{n}}{4} \rightarrow \ldots \rightarrow 1}$.
$\log _{2}(n)$


## Halving: A generic Algorithm

Recall that the sequence is consistent with some $h^{*} \in H$. So, the version space will be non-empty.

Idea: Start with all consistent hypotheses. On mistake, make sure we can significantly narrow down the set of consistent hypotheses.

## Halving Algorithm

Let $V S_{1}=V S(H, \emptyset)$
// This is equal to $H$
For $t=1, \ldots, T$

- Receive $x_{t}$ and predict the same label $\hat{y}_{t}$ as the majority of $h \in V S_{t}$.
- $V S_{t+1}=V S_{t} \backslash\left\{h: h\left(x_{t}\right) \neq y_{t}\right\} \quad$ //Remove the wrong hypotheses


## Halving: A generic Algorithm

|  | $h_{1}$ | $h_{2}$ | $h_{3}$ | $h_{4}$ | $h_{5}$ | $h_{6}$ | $h_{7}$ | Alg |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Include at $t=1$ ? | $\checkmark$ |  |
| Prediction $\left(x_{1},-\right)$ ? | + | + | - | + | - | + | - | + , mistake |
| Include at $t=2$ |  |  | $\checkmark$ |  | $\checkmark$ |  | $\checkmark$ |  |
| Prediction $\left(x_{2},+\right)$ ? |  |  | + |  | + |  | - | + , correct |
| Include at $t=3$ |  |  | $\checkmark$ |  | $\checkmark$ |  |  |  |
| Prediction $\left(x_{3},-\right)$ ? |  |  | - |  | - |  |  | - , correct |
| Include at $t=4$ |  |  | $\checkmark$ |  | $\checkmark$ |  |  |  |

## Theorem: Mistake Bound of Halving

For any $\boldsymbol{H}$, Halving's mistake bound is $\leq \log _{2}(|H|)$.
Proof: If we make a mistake at time $t$, majority of $V S_{t}$ were wrong $\rightarrow$
$\left|V S_{t+1}\right| \leq \frac{1}{2}\left|V S_{t}\right|$. After $\log _{2}(|H|)$ mistakes, only one hypothesis is left.

## No Consistent Hypothesis

If no consistent $h^{*} \in H$, we can make infinitely many mistakes.
Compare with the best (not necessarily consistent) $h^{*} \in H$.

- Each $h \in H$ is an "expert" that gives you advice.
- Want to do nearly as well as the best "expert", in hindsight.

Online algorithm that on sequence $\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right), \ldots,\left(x_{T}, y_{T}\right)$ makes predictions $\hat{y}_{1}, \hat{y}_{2}, \ldots, \hat{y}_{T}$,

Algorithm's \# mistakes: $\mathrm{M}=\sum_{t=1}^{T} 1\left(\hat{y}_{t} \neq y_{t}\right)$
Best Expert's \# mistakes: OPT $=\min _{h^{*} \in H} \sum_{t=1}^{T} 1\left(h^{*}\left(x_{t}\right) \neq y_{t}\right)$
Is M close to OPT?

## Attempt 1: Weighted Majority

## Halving Algorithm:

- A mistake completely disqualifies an expert $h$.
- Predict with the majority of the remaining experts.


## Weighted Majority Algorithm:

- A mistake lowers the weight of an expert $h$.
- Predict with the weighted majority of the experts.

|  | $h_{1}$ | $h_{2}$ | $h_{3}$ | $h_{4}$ | $h_{5}$ | $h_{6}$ | $h_{7}$ | Alg |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Weight $t=1 ?$ | 1 | 1 | 1 | 1 | 1 | 1 | 1 |  |
| Prediction $\left(x_{1},-\right) ?$ | + | + | - | + | - | + | - | + , mistake |
| Include at $t=2$ | $1 / 2$ | $1 / 2$ | 1 | $1 / 2$ | 1 | $1 / 2$ | 1 |  |
| Prediction $\left(x_{2},+\right) ?$ | - | - | + | - | + | - | - | - , mistake |
| Include at $t=3$ | $1 / 4$ | $1 / 4$ | 1 | $1 / 4$ | 1 | $1 / 4$ | $1 / 2$ |  |

## Attempt 1: Weighted Majority

## Halving Algorithm:

- A mistake completely disqualifies an expert $h$.
- Predict with the majority of the remaining experts.


## Weighted Majority Algorithm:

- A mistake lowers the weight of an expert $h$.
- Predict with the weighted majority of the experts.
(Deterministic) Weighted Majority with parameter $\beta$
Initialize weights $w_{h}^{(1)}=1$ for all $h \in H$.
For $t=1, \ldots T$
On $x_{t}$ predict

$$
\hat{y}_{t}=\operatorname{argmax}_{y} \sum_{h \in H} w_{h}^{(t)} \times 1\left(h\left(x_{t}\right)=y\right)
$$

For $h \in H$

$$
\text { If } h\left(x_{t}\right) \neq y_{t} \text { then } w_{h}^{(t+1)}=w_{h}^{(t)} \beta \text {, else } w_{h}^{(t+1)}=w_{h}^{(t)}
$$

## Weighted Majority Guarantees

Theorem: Guarantees of Weighted Majority $\beta=0.5$
For M: Algorithms \# mistakes and OPT: best expert's \# mistakes, the
(Deterministic) weighted majority algorithm with $\beta=0.5$ gets

$$
M \leq 2.4\left(\log _{2}(|H|)+O P T\right)
$$

## Proof Idea:

- Best $h^{*}$ makes OPT mistakes, so $w_{h^{*}}^{T}=\left(\frac{1}{2}\right)^{O P T}$.
- The total weight at $t=1$ of all experts is $\mathrm{W}=|H|$
- On every mistake, half of the weight is on experts that made a mistake. $\rightarrow$ Their weight is cut by half. Total weight $\mathrm{W} \leftarrow \frac{1}{2} W+\frac{1}{2} W(0.5)=\frac{3}{4} W$.
$\rightarrow$ After $M$ mistakes, $W \leq|H|\left(\frac{3}{4}\right)^{M}$.
- We have

$$
\left(\frac{1}{2}\right)^{O P T} \leq|H|\left(\frac{3}{4}\right)^{M} \longrightarrow\left(\frac{4}{3}\right)^{M} \leq|H| 2^{O P T} \longrightarrow M \leq 2.4\left(\log _{2}|H|+O P T\right)
$$

## Attempt 2: Randomized Decisions

- $M \leq 2.4\left(\log _{2}(|H|)+O P T\right)$ is good if $O P T$ is small.
- If $O P T$ is close to $T / 2$ then this bound allows us to make a mistake on every turn.
- Want to show that $M-O P T$ is small
$\rightarrow$ Ideally, smaller than $o(T)$.
$\rightarrow$ On average over $T$ timesteps, we do nearly as well as the best expert.

Idea: Smoothly transition between predicting + or - based on the weights.
$\rightarrow$ Weighted majority: $49 \%+$, $51 \%$-, predict -
$\rightarrow$ Randomized Weighted majority $49 \%+, 51 \%-$ - predict + with 0.49 probability and - with 0.51 probability.
$\rightarrow$ Allow less aggressive $\beta$.

## Randomized Weighted Majority

## (Randomized) Weighted Majority with parameter 1 - $\epsilon$

Initialize weights $w_{h}^{(1)}=1$ for all $h \in H$.
For $t=1, \ldots T$
Let $W^{t}=\sum_{h \in H} w_{h}^{t}$ be the total weight at step $t$.
On $x_{t}$
Predict $\hat{y}$ with probability $\frac{1}{W^{t}} \sum_{h \in H} w_{h}^{(t)} \times 1\left(h\left(x_{t}\right)=\widehat{y}\right)$
For $h \in H$, if $h\left(x_{t}\right) \neq y_{t}$ then $w_{h}^{(t+1)}=w_{h}^{(t)}(1-\epsilon)$, else $w_{h}^{(t+1)}=w_{h}^{(t)}$.

## Theorem: Guarantees of Rand. Weighted Majority

For M: Algorithms \# mistakes and OPT: best expert's \# mistakes, the randomized weighted majority algorithm with parameter $1-\epsilon$ gets

$$
\mathbb{E}[M] \leq(1+\epsilon) O P T+\frac{1}{\epsilon} \log _{2}(|H|)
$$

For $\epsilon=\sqrt{\frac{\log _{2}|H|}{O P T}}$, get $\mathbb{E}[M] \leq O P T+2 \sqrt{T \log _{2}|H|}$.

## Regret

## Definition: Regret

Online algorithm that on sequence $\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right), \ldots,\left(x_{T}, y_{T}\right)$ makes predictions $\hat{y}_{1}, \hat{y}_{2}, \ldots, \hat{y}_{T}$,

$$
\text { REGRET }=\underbrace{\sum_{t=1}^{T} 1\left(\hat{y}_{t} \neq y_{t}\right)}_{\text {M: Algorithm's \# Mistakes }}-\underbrace{\min _{h^{*} \in H} \sum_{t=1}^{T} 1\left(h^{*}\left(x_{t}\right) \neq y_{t}\right)}_{\text {OPT: Algorithm's \# Mistakes }}
$$

## Theorem: Regret of Rand. Weighted Majority

For randomized weighted majority when $\epsilon=\sqrt{\frac{\log _{2}|H|}{O P T}}$, we have $\mathbb{E}[$ REGRET $] \leq 2 \sqrt{T \log _{2}|H|}$.

