Machine Learning for Intelligent Systems

Lecture 23: Online Learning

Reading: UML 21 and Blum&Mansour chapter

Instructors: Nika Haghtalab (this time) and Thorsten Joachims

Statistical Learning Recap

PAC learning:

- Data set *S* of *m* samples is drawn i.i.d. from distribution *P*.
- Using this data set we want to find h_S
- So, that $err_P(h_S) \leq \min_{h \in H} err_P(h) + \epsilon$
- It works if $m \ge \frac{c_0}{\epsilon^2} \left(VCDim(H) + \ln\left(\frac{1}{\delta}\right) \right)$.

Online Learning

The data might not be coming from a distribution:

- Today's data can depend on yesterday's data and decision.
- Environment is evolving over time in an unpredictable way.
- We don't want to make any assumptions on how the data evolves.
- We want to make decisions on any instance as soon as it arrives.

Online Learning framework (realizable) Sequence of data and learning tasks:

- On round *t* we are given x_t and unknown label $y_t = h^*(x_t)$ for a fixed $h^* \in H$.
- We predict $\hat{y_t}$, after the prediction we see if we made a mistake or not.
- Goal: Bound the number of mistakes we make.

Recall: Online Perceptron

Theorem: Mistake Bound of Online Perceptron Given a sequence of data $(\vec{x}_1, y_1), (\vec{x}_2, y_2), ..., (\vec{x}_m, y_m)$ one by one, with radius R and margin $\gamma \coloneqq \min_{i \in S} \frac{y_i(\vec{w}^* \cdot \vec{x}_i)}{\|\vec{w}^*\|}$ for some \vec{w}^* . **Online prediction:** At each time use the current \vec{w} to predict the label of incoming (\vec{x}_i, y_i) , update if needed. **Mistake Bound:** The number of mistake that perceptron makes is at most R^2/γ^2 .

Mistake Bound Model

Goal: Upper bounding the mistake bound.

Example: 1-D thresholds (discrete)

Let $X = \{1, ..., n\}$ be the instance space. Let $H = \{h_a | a \in \{1, ..., n\}\}$ where $h_a(x) = 1(x \ge a)$.

- x^- : The *right-most* instance labeled -1
- x^+ : The *left-most* instance labeled +1
- Any *Alg* can be forced to make $\geq \log_2(n)$ mistakes.
 - \rightarrow Mistake bound is **at least** $\log_2(n)$.

There is a strategy that makes no more than $log_2(n)$ mistakes.

 \rightarrow Use the algorithm that at any time

• Predict using $h_a(.)$ for *a* halfway between x^- and x^+ .

 \rightarrow On mistake: Distance between x^- and x^+ is halved (or smaller)

• No more mistakes can be made when $|x^- - x^+| = 1$.

•
$$n \rightarrow \frac{n}{2} \rightarrow \frac{n}{4} \rightarrow \dots \rightarrow 1$$
.
 $\log_2(n)$

Halving: A generic Algorithm

Recall that the sequence is consistent with some $h^* \in H$. So, the version space will be non-empty.

Idea: Start with all consistent hypotheses. On mistake, make sure we can significantly narrow down the set of consistent hypotheses.

Halving AlgorithmLet $VS_1 = VS(H, \emptyset)$ For t = 1, ..., T• Receive x_t and predict the same label \hat{y}_t as the majority of $h \in VS_t$.• $VS_{t+1} = VS_t \setminus \{h: h(x_t) \neq y_t\}$ //Remove the wrong hypotheses

Halving: A generic Algorithm

	<i>h</i> ₁	h_2	<i>h</i> ₃	h_4	h_5	<i>h</i> ₆	h_7	Alg
Include at $t = 1$?	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	
Prediction $(x_1, -)$?	+	+	-	+	-	+	-	+, mistake
Include at $t = 2$			\checkmark		\checkmark		\checkmark	
Prediction $(x_2, +)$?			+		+		-	+, correct
Include at $t = 3$			\checkmark		\checkmark			
Prediction $(x_3, -)$?			-		-			-, correct
Include at $t = 4$			\checkmark		\checkmark			

Theorem: Mistake Bound of Halving For any *H***, Halving's mistake bound is** $\leq log_2(|H|)$. **Proof:** If we make a mistake at time *t*, majority of VS_t were wrong \rightarrow $|VS_{t+1}| \leq \frac{1}{2} |VS_t|$. After $\log_2(|H|)$ mistakes, only one hypothesis is left.

No Consistent Hypothesis

If no consistent $h^* \in H$, we can make infinitely many mistakes.

Compare with the best (not necessarily consistent) $h^* \in H$.

- Each $h \in H$ is an "expert" that gives you advice.
- Want to do nearly as well as the best "expert", in hindsight.

Online algorithm that on sequence $(x_1, y_1), (x_2, y_2), \dots, (x_T, y_T)$ makes predictions $\hat{y}_1, \hat{y}_2, \dots, \hat{y}_T$,

Algorithm's # mistakes: $M = \sum_{t=1}^{r} 1(\hat{y}_t \neq y_t)$

Best Expert's # mistakes: OPT = $\min_{h^* \in H} \sum_{t=1}^T 1(h^*(x_t) \neq y_t)$

Is M close to OPT?

Attempt 1: Weighted Majority

Halving Algorithm:

- A mistake completely disqualifies an expert *h*.
- Predict with the majority of the remaining experts.

Weighted Majority Algorithm:

- A mistake **lowers the weight** of an expert *h*.
- Predict with the **weighted** majority of the experts.

	h_1	h_2	<i>h</i> ₃	h_4	h_5	<i>h</i> ₆	h_7	Alg
Weight $t = 1$?	1	1	1	1	1	1	1	
Prediction $(x_1, -)$?	+	+	-	+	-	+	-	+, mistake
Include at $t = 2$	1/2	1/2	1	1/2	1	1/2	1	
Prediction $(x_2, +)$?	-	-	+	-	+	-	-	-, mistake
Include at $t = 3$	1/4	1/4	1	1/4	1	1/4	1/2	

Attempt 1: Weighted Majority

Halving Algorithm:

- A mistake completely disqualifies an expert *h*.
- Predict with the majority of the remaining experts.

Weighted Majority Algorithm:

- A mistake **lowers the weight** of an expert *h*.
- Predict with the **weighted** majority of the experts.

(Deterministic) Weighted Majority with parameter β Initialize weights $w_h^{(1)} = 1$ for all $h \in H$. For t = 1, ... TOn x_t predict $\hat{y}_t = \operatorname{argmax}_y \sum_{h \in H} w_h^{(t)} \times 1(h(x_t) = y)$ For $h \in H$ If $h(x_t) \neq y_t$ then $w_h^{(t+1)} = w_h^{(t)}\beta$, else $w_h^{(t+1)} = w_h^{(t)}$.

Weighted Majority Guarantees

Theorem: Guarantees of Weighted Majority $\beta = 0.5$

For M: Algorithms # mistakes and OPT: best expert's # mistakes, the (Deterministic) weighted majority algorithm with $\beta = 0.5$ gets $M \le 2.4(log_2(|H|) + OPT)$.

Proof Idea:

- Best h^* makes OPT mistakes, so $w_{h^*}^T = \left(\frac{1}{2}\right)^{OPT}$.
- The total weight at t = 1 of all experts is W = |H|
- On every mistake, half of the weight is on experts that made a mistake. →Their weight is cut by half. Total weight $W \leftarrow \frac{1}{2}W + \frac{1}{2}W(0.5) = \frac{3}{4}W$.

→ After *M* mistakes, $W \le |H| \left(\frac{3}{4}\right)^M$.

• We have

$$\left(\frac{1}{2}\right)^{OPT} \le |H| \left(\frac{3}{4}\right)^M \longrightarrow \left(\frac{4}{3}\right)^M \le |H| 2^{OPT} \longrightarrow M \le 2.4(\log_2|H| + OPT)$$

Attempt 2: Randomized Decisions

- $M \leq 2.4(log_2(|H|) + OPT)$ is good if *OPT* is small.
- If OPT is close to T/2 then this bound allows us to make a mistake on every turn.
- Want to show that M OPT is small

 \rightarrow Ideally, smaller than o(T).

 \rightarrow On average over *T* timesteps, we do nearly as well as the best expert.

Idea: Smoothly transition between predicting + or – based on the weights.

- →Weighted majority: 49% +, 51% -, predict –
- →Randomized Weighted majority 49% +, 51% -, predict + with 0.49 probability and with 0.51 probability.
- \rightarrow Allow less aggressive β .

Randomized Weighted Majority

(Randomized) Weighted Majority with parameter $1 - \epsilon$ Initialize weights $w_h^{(1)} = 1$ for all $h \in H$. For t = 1, ... TLet $W^t = \sum_{h \in H} w_h^t$ be the total weight at step t. On x_t Predict \hat{y} with probability $\frac{1}{W^t} \sum_{h \in H} w_h^{(t)} \times 1(h(x_t) = \hat{y})$ For $h \in H$, if $h(x_t) \neq y_t$ then $w_h^{(t+1)} = w_h^{(t)}(1 - \epsilon)$, else $w_h^{(t+1)} = w_h^{(t)}$.

Theorem: Guarantees of Rand. Weighted MajorityFor M: Algorithms # mistakes and OPT: best expert's # mistakes, the
randomized weighted majority algorithm with parameter $1 - \epsilon$ gets $\mathbb{E}[M] \le (1 + \epsilon)OPT + \frac{1}{\epsilon}\log_2(|H|)$.For $\epsilon = \sqrt{\frac{\log_2|H|}{OPT}}$, get $\mathbb{E}[M] \le OPT + 2\sqrt{T\log_2|H|}$.

Regret

Definition: Regret

Online algorithm that on sequence $(x_1, y_1), (x_2, y_2), \dots, (x_T, y_T)$ makes predictions $\hat{y}_1, \hat{y}_2, \dots, \hat{y}_T$,

Theorem: Regret of Rand. Weighted MajorityFor randomized weighted majority when $\epsilon = \sqrt{\frac{\log_2 |H|}{OPT}}$, we have $\mathbb{E}[\text{REGRET}] \le 2\sqrt{T \log_2 |H|}.$