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Growth	Function	&	VC	Dimension

𝐻 shatters	a	sample	set	𝑆 if	 𝐻 𝑆 = 2 % .
VC	Dimension	of 𝐻 is	the	size	of	the	largest	set 𝑆 that	can	be	
shattered	by 𝐻.

Recall:	Shattering	and	VC	Dimension

ç VCDim 𝐻 : Largest	𝑚 for	which	𝐻 𝑚 = 2..	

To	show	that	VCDim 𝐻 = dwe	need	to	show
1. There	exists	a	set of	d points	that	can	be	shattered.
2. There	is	no	set of	d + 1 points	that	can	be	shattered.

The	set	all	m-tuples	produced	by	hypotheses	in	𝐻 on	the	sample	set	𝑆
𝐻 𝑆 = ℎ 𝑥4 , ℎ 𝑥6 , ℎ 𝑥7 , … , ℎ 𝑥. 9∈;

Growth	function: 𝐻 𝑚 = max
% >.

|𝐻[𝑆]| is	the	largest	number	of	

unique	rows	that	𝐻 can	produce	on	any	set	of	𝑚 elements.

Growth	function



VC	Dimension	of	Linear	Threshold

Let	𝐻 be	the	set	of	all	homogenous	linear	thresholds	in	ℝC .	We	have	
VCDim 𝐻 = 𝑑.

Let	𝐻 be	the	set	of	all	linear	thresholds	(possibly	non-homogenous)	
in	ℝC .	We	have	VCDim 𝐻 = 𝑑 + 1.
à You	can	shatter	the	set	 0, 𝑒4, … , 𝑒C ,	where	𝑒G = (0,… 0, 1, 0… , 0)
has	1 only	at	coordinate	𝑖.è VCDim 𝐻 ≥ d + 1.	(Try	at	home)

à Showing	that	we	cannot	shatter	a	set	of	d + 2 points	requires	more	
work	(we	won’t	cover	it).

Theorem:	VC	Dimension	of	Linear	thresholds	in	ℝC



VC	Dimension	&	Learnability

VC	Dimension	is	roughly	the	point	where	the	growth	function	stops	
being	exponential	and	becomes	polynomial.

• If VCDim H = ∞ then	𝐻 𝑚 = 2. for	all	𝑚.
à It	would	be	impossible	to	learn!
• If	VCDim H = 𝑑 then 𝐻 𝑚 < 𝑂(𝑚C) for	all	𝑚.
àWe	can	learn!

When	is	learning	from	samples	possible?



PAC	Learnability

A	hypothesis	class	𝐻 is	PAC	learnable	if	there	is	a	function	𝑚; 𝜖, 𝛿
and	a	learning	algorithm	such	that:	

For	any	𝜖, 𝛿 ∈ (0,1) and	any	distribution	𝑃 over	𝑋×𝑌 such	that	all	
samples	are	labeled	by	one	hypothesis	ℎ∗ ∈ 𝐻,	running	the	

learning	algorithm	on	𝑚 ≥ 𝑚; 𝜖, 𝛿 i.i.d.	samples	generated	from	
𝑃,	the	algorithm	returns	ℎ ∈ 𝐻 such	that	with	probability		1 − 𝛿
over	the	choice	of	the	samples,	𝑒𝑟𝑟Y ℎ ≤ 𝜖.

Probably	Approximately	Correct	Learnability

Often	called	“realizable”	PAC:	There	is	a	hypothesis	𝑒𝑟𝑟Y(ℎ∗) = 0



Agnostic	PAC	Learnability

A	hypothesis	class	𝐻 is	PAC	learnable	if	there	is	a	function	𝑚; 𝜖, 𝛿
and	a	learning	algorithm	such	that:	

For	any	𝜖, 𝛿 ∈ (0,1) and	any	distribution	𝑃 over	𝑋×𝑌 such	that	all	
samples	are	labeled	by	one	hypothesis	ℎ∗ ∈ 𝐻,	running	the	

learning	algorithm	on	𝑚 ≥ 𝑚; 𝜖, 𝛿 i.i.d.	samples	generated	from	
𝑃,	the	algorithm	returns	ℎ ∈ 𝐻 such	that	with	probability		1 − 𝛿
over	the	choice	of	the	samples,	𝑒𝑟𝑟Y ℎ ≤ 𝜖.

Probably	Approximately	Correct	Learnability

Often	called	“agnostic”	PAC:	No	assumption	on	min
9∈;

𝑒𝑟𝑟Y ℎ

𝑒𝑟𝑟Y ℎ ≤ min
9∈;

𝑒𝑟𝑟Y ℎ + 𝜖



Let	𝑚 ≥ \]
^_

𝑉𝐶𝐷𝑖𝑚(𝐻)+ ln 4
d

.	For	any	𝑋,	Y = {−1, 1}, and
distribution 𝑃 on 𝑋×𝑌,	with	probability	1 − 𝛿 over	i.i.d	draws	of	set	𝑆
of𝑚 samples,	ℎ% = 𝑎𝑟𝑔𝑚𝑖𝑛9∈;𝑒𝑟𝑟%(𝐻) has	𝑒𝑟𝑟Y ℎ% ≤ 𝑒𝑟𝑟Y ℎ∗ + 𝜖.

Let	𝑚 ≥ \]
^
𝑉𝐶𝐷𝑖𝑚 𝐻 ln(4

^
) + ln 4

d
.	For	any	𝑋,	Y = {−1, 1},	and	

distribution 𝑃 on 𝑋×𝑌,	with	probability	1 − 𝛿 over	i.i.d	draws	of	set	𝑆
of𝑚 samples,	any ℎ ∈ 𝐻 such	that err% ℎ = 0,	also	has 𝑒𝑟𝑟Y ℎ < 𝜖.

Theorem:	Sample	Complexity	Infinite	Hypothesis	Class	(zero	empirical	error)	

Theorem:	Sample	Complexity	Infinite	Hypothesis	Class	(Non-zero	empirical	error)	

Probably Approximately	Correct	(PAC)
(Belief	that	𝑒𝑟𝑟Y ℎ∗ = 0)

Agnostic Probably	Approximately	Correct
(No	belief	about	value	of	𝑒𝑟𝑟Y ℎ∗ )

Empirical	Risk	Minimization	alg:	Return	ℎ% = 𝑎𝑟𝑔𝑚𝑖𝑛9∈;𝑒𝑟𝑟%(𝐻)
Algorithm:	Empirical	Risk	Minimization	(ERM)



VC	Dimension	&	Learnability

All	the	following	are	equivalent:
• 𝐻 has	finite	VC	dimension.	
• 𝐻 is	(realizable)	PAC	learnable
• 𝐻 is	agnostically	PAC	learnable
• The	Empirical	Risk	Minimization	algorithm	PAC	learns	𝐻.
• The	Empirical	Risk	Minimization	algorithm	agnostically	
PAC	learns	𝐻.

When	is	learning	from	samples	possible?


