# Machine Learning for Intelligent Systems

Lecture 18: Statistical Learning Theory 2

Reading: UML 6

Instructors: Nika Haghtalab (this time) and Thorsten Joachims

## **Fundamental Questions**

Questions in Statistical Learning Theory:

- Trying to learn a classifier from *H*?
- How good is the learned rule after *m* examples?
- How many examples is needed for the learned rule to be accurate?
- What can be learned and what cannot?
- Is there a universally best learning algorithm?

In particular, we will address:

• What kind of a guarantee on the true error of a classifier can I get if I know its training error?

#### Sample Complexity – 0 Empirical Error

Theorem: Sample Complexity (zero empirical error)

Let  $m \ge \frac{1}{\epsilon} \left( \ln(|H|) + \ln\left(\frac{1}{\delta}\right) \right)$ . For any instance space *X*, labels  $Y = \{-1, 1\}$ , distribution *P* on *X*×*Y*, with probability  $1 - \delta$  over i.i.d draws of set *S* of *m* samples, we have Any  $h \in H$  that has **0 empirical error**, has **true error** of  $err_P(h) \le \epsilon$ .

**Learning Algorithm:** Given a sample set *S* and hypothesis class  $h \in H$ , if there is a  $h_S \in H$  that is *consistent* with *S*, return  $h_S$ . (Eqv. Return  $h_S$  in version space VS(H, S))

## No Consistent Hypothesis

**A reasonable learning Algorithm:** Given a sample set *S* and hypothesis class  $h \in H$ , return  $h_S = argmin_{h \in H} err_S(h)$ .

What can go wrong? Best hypothesis on distribution  $h^* = argmin_{h \in H} err_P(h)$ .



The **true error** of  $h_S$  is within  $\epsilon$  of the **optimal true error**,  $err_P(h^*)$ , if

For all  $h \in H$ , we have  $|err_S(h) - err_P(h)| \leq \frac{\epsilon}{2}$ .

## Sample Complexity – General

#### Theorem

For any instance space *X*, labels  $Y = \{-1, 1\}$ , and distribution *P* on  $X \times Y$ , consider a set *S* of *m* i.i.d. samples from *P*. We have

$$\Pr_{S \sim P^m} \left[ \exists h \in H, \quad |err_S(h) - err_P(h)| > \frac{\epsilon}{2} \right] \le 2|H|e^{-\epsilon^2 m/2}$$

Theorem: Sample Complexity (non-zero empirical error)

Let  $m \ge \frac{2}{\epsilon^2} \left( \ln(|H|) + \ln\left(\frac{2}{\delta}\right) \right)$ . For any instance space *X*, labels  $Y = \{-1, 1\}$ , distribution *P* on *X*×*Y*, with probability  $1 - \delta$  over i.i.d draws of set *S* of *m* samples,  $h_S \in H$ , with **least empirical error**, has **true error**  $err_P(h_S) \le err_P(h^*) + \epsilon$ .

## Example: Smart Investing

- Task: Pick stock analyst based on past performance.
- Experiment:
  - Review analyst prediction "next day up/down" for past 10 days. Pick analyst that makes the fewest errors.
  - Situation 1:
    - 2 stock analyst {A1,A2}, A1 makes 5 errors
  - Situation 2:
    - 5 stock analysts {A1,A2,B1,B2,B3}, B2 best with 1 error
  - Situation 3:
    - 1005 stock analysts {A1,A2,B1,B2,B3,C1,...,C1000}, C543 best with 0 errors
- Question: Which analysts are you most confident in,
  - A1, B2, C543?

## Infinite Hypothesis Classes

Linear thresholds in

Neural Networks



Sample Complexity bounds for finite hypothesis spaces become meaningless:

$$\frac{1}{\epsilon} \left( \ln(|H|) + \ln\left(\frac{1}{\delta}\right) \right) \qquad \frac{2}{\epsilon^2} \left( \ln(|H|) + \ln\left(\frac{2}{\delta}\right) \right)$$

## Effective Number of Hypotheses

How many different ways hypotheses in *H* label the sample set *S*?

Most complex: Many unique rows

 $2^m$  unique rows



Least complex: Just one unique row **1 unique row** 



**Growth function** 

 $h_i(x_i)$ 

The set all m-tuples produced by hypotheses in H on the sample set S

 $H[S] = \left\{ \left( h(x_1), h(x_2), h(x_3), \dots, h(x_m) \right) \right\}_{h \in H}$ 

**Growth function**:  $H[m] = \max_{|S|=m} |H[S]|$  is the largest number of unique rows that *H* can produce on any set of *m* elements.

## **Example 1: Growth Function**

What is H[m] for thresholds on a line:

- $h_w(x) = 1$  if  $x \ge w$  and -1 otherwise.
- *H* is infinitely large

• *H*[*m*]?





• For any *m* points, H[m] is the number of intervals they divide the line to, which is at most  $m + 1 \ll 2^m$ .

## **Example 2: Growth Functions**

What is H[m] for *intervals on the line*:

- $h_{w,w'}(x) = 1$  if  $w' \ge x \ge w$  and -1 otherwise



*H* is infinitely large ٠

$$H[m] = \binom{m}{0} + \binom{m}{1} + \binom{m}{2} = 1 + m + \frac{m(m-1)}{2} = 0(m^2) \ll 2^m$$

• Where  $\binom{m}{k}$  is the number of ways we can choose a subset of size k from a set of *m* items.

$$\binom{m}{k} = \frac{m!}{(m-k)!\,k!}$$

#### Sample Complexity – growth Function

Let  $m \ge \frac{c_0}{\epsilon} \left( \ln(H[2m]) + \ln\left(\frac{1}{\delta}\right) \right)$  for some constant  $c_0$ . For any instance space *X*, labels  $Y = \{-1, 1\}$ , distribution *P* on  $X \times Y$ , with probability  $1 - \delta$  over i.i.d draws of set *S* of *m* samples, we have Any  $h \in H$  that has **0 empirical error**, has **true error** of  $err_P(h) \le \epsilon$ .

• Difficult to interpret:

$$m \ge \Omega\left(\frac{\ln(H[2m])}{\epsilon}\right)$$

• If,  $H[m] = 2^m$ , the sample complexity is

Impossible to learn $m \ge \Omega$ from samples.

VC Dimension

## VC Dimension

**Shattering and VC Dimension** 

*H* shatters a sample set *S* if  $|H[S]| = 2^{|S|}$ . **VC Dimension** of *H* is the size of the largest set *S* that can be shattered by *H*.  $\leftarrow$  VCDim(*H*): Largest *m* for which  $H[m] = 2^m$ .

VC Dimension is roughly the point where the growth function stops being exponential and becomes polynomial.

