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Fundamental Questions

Questions in Statistical Learning Theory:

* Trying to learn a classifier from H?

 How good is the learned rule after m examples?

 How many examples is needed for the learned rule to be accurate’
* What can be learned and what cannot?

* Is there a universally best learning algorithm?

In particular, we will address:

 What kind of a guarantee on the true error of a classifier can I get
if I know its training error?



Sample Complexity — 0 Empirical Error

e Theorem: Sample Complexity (zero empirical error) ~N

Letm > % (ln(lHI) + In (%)) For any instance space X, labels Y =
{—1, 1}, distribution P on X XY, with probability 1 — § over i.i.d draws

of set S of m samples, we have

Any h € H that has 0 empirical error, has true error of errp(h) < €.
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Learning Algorithm: Given a sample set S and hypothesis class h €
H, if there is a hg € H that is consistent with S, return hs. (Eqv. Return
hs in version space VS(H, S))



No Consistent Hypothesis

A reasonable learning Algorithm: Given a sample set S and
hypothesis class h € H, return hg = argmin,cy errs(h).

What can go wrong?
Best hypothesis on distribution h* = argmin,cy errp(h).
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The true error of hg is within € of the optimal true error, errp(h*), if

For all h € H, we have |errs(h) — errp(h)| < —;



Sample Complexity — General

-

~
For any instance space X, labels Y = {—1, 1}, and distribution P on
X XY, consider a set S of m i.i.d. samples from P. We have
€ 2
Pr [EI h € H, lerrs(h) — errp(h)| >—] < 2|H|e~€™/2,
\ S~Pm 2 )
Theorem: Sample Complexity (non-zero empirical error) ~N

Letm > 6—22 (ln(lHI) + In (%)) For any instance space X, labels Y =

{—1, 1}, distribution P on X XY, with probability 1 — § over i.i.d draws

of set S of m samples, hg € H, with least empirical error, has true error

S errp(hg) < errp(h*) + €.
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Example: Smart Investing

* Task: Pick stock analyst based on past performance.

 Experiment:

* Review analyst prediction “next day up/down” for past 10 days.
Pick analyst that makes the fewest errors.

e Situation 1:

» 2 stock analyst {A1,A2}, A1 makes 5 errors
e Situation 2:

* 5stock analysts {A1,A2,B1,B2,B3}, B2 best with 1 error
e Situation 3:

* 1005 stock analysts {A1,A2,B1,B2,B3,C1,...,,C1000},
C543 best with 0 errors

* Question: Which analysts are you most confident in,
Al, B2, C543?



Infinite Hypothesis Classes

Linear thresholds in Neural Networks
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Thresholds on the line Intervals oln theI real line
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Sample Complexity bounds for finite hypothesis spaces become
meaningless:

(o m() At +n(l)



Effective Number of Hypotheses

How many different ways hypotheses in H label the sample set S?

Most complex: Many unique rows Least complex: Just one unique row
2™ unique rows 1 unique row

g2 x| x, X3 | e | X H x| % | X3 | oo |Xm

hy |-1]-1]1 -1 hy |11 -1 1

h, |1 (-1]-1| ] 1 h, |1 ]|1]-1 1

hy |-1]1 -1 1 hs |11 -1 1

hy |1 1] 1 -1 h; (xj) hy |1 |1]|-1 1
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- Growth function
The set all m-tuples produced by hypotheses in H on the sample set S

H[S] = { (hCx1), h(xz), h(xs), o h ) },

Growth function: H|m| = max |H[S]| is the largest number of
=m

~N

\ unique rows that H can produce on any set of m elements. )




Example 1: Growth Function

What is H|[m] for thresholds on a line:
* h,(x) =1ifx = w and —1 otherwise.
* H isinfinitely large

+
|
|

wE R

« H[m]?
1 =
+ + + +
+ + +
+ +
+

+ + + + + _e

* For any m points, H[m] is the number of intervals they divide
the line to, which is at mostm + 1 « 2™,
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Example 2: Growth Functions

What is H|m] for intervals on the line:
hyw(x) = 1ifw’ > x > w and —1 otherwise
* H isinfinitely large
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Himl = () + () +() = Lpm e P ey« gm

 Where (7;':) is the number of ways we can choose a subset of size k

from a set of m items.
ml

m !
(k)z(m—k)!k!

v



Sample Complexity — growth Function

4 )

Letm > C—EO ( In(H[2m])+ In (%)) for some constant c,,.
For any instance space X, labels Y = {—1, 1}, distribution P on X XY,

with probability 1 — é over i.i.d draws of set S of m samples, we have

Any h € H that has 0 empirical error, has true error of errp(h) < €.

- J
e Difficult to interpret:
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o If, H{m] = 2™, the sample complexity is Ve

Impossibletolearn m > O (—

m) Dimension
from samples. €



VC Dimension

- Shattering and VC Dimension

H shatters a sample set S if |[H[S]| = 25,
VC Dimension of H is the size of the largest set S that can be

shattered by H. € VCDim(H): Largest m for which H[m] = 2™.
\_

VC Dimension is roughly the point where the growth function stops
being exponential and becomes polynomial.

e When is learning from samples possible? ~

 IfVCDim(H) = oo then H|[m] = 2™ for all m

—> It would be impossible to learn!

« IfVCDim(H) = d then H[m] < 0(m?) for all m

- We can learn!
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