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Fundamental	Questions

Questions	in	Statistical	Learning	Theory:
• Trying	to	learn	a	classifier	from	𝐻?
• How	good	is	the	learned	rule	after	𝑚 examples?
• How	many	examples	is	needed	for	the	learned	rule	to	be	accurate?
• What	can	be	learned	and	what	cannot?
• Is	there	a	universally	best	learning	algorithm?

In	particular,	we	will	address:	
• What	kind	of	a	guarantee	on	the	true	error	of	a	classifier	can	I	get	
if	I	know	its	training	error?
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Sample	Complexity	– 0	Empirical	Error

Let	𝑚 ≥ $
%
ln 𝐻 + ln $

)
.	For	any	instance	space	𝑋,	labels	Y =

{−1, 1},	distribution 𝑃 on 𝑋×𝑌,	with	probability	1 − 𝛿 over	i.i.d	draws	
of	set	𝑆 of𝑚 samples,	we	have
Any ℎ ∈ 𝐻 that has 𝟎 𝐞𝐦𝐩𝐢𝐫𝐢𝐜𝐚𝐥 𝐞𝐫𝐫𝐨𝐫, has 𝐭𝐫𝐮𝐞 𝐞𝐫𝐫𝐨𝐫 of 𝑒𝑟𝑟O ℎ ≤ 𝜖.

Theorem:	Sample	Complexity	(zero	empirical	error)

Learning	Algorithm: Given	a	sample	set	𝑆 and	hypothesis	class	ℎ ∈
𝐻,	if	there	is	a	ℎS ∈ 𝐻 that	is	consistentwith	𝑆,	return	ℎS.	(Eqv.	Return	
ℎS in	version	space	VS(𝐻, 𝑆))



No	Consistent	Hypothesis
A	reasonable	learning	Algorithm: Given	a	sample	set	𝑆 and	
hypothesis	class	ℎ ∈ 𝐻,	return	ℎS = 𝑎𝑟𝑔𝑚𝑖𝑛\∈] 𝑒𝑟𝑟S(ℎ).

What	can	go	wrong?	
Best	hypothesis	on	distribution	ℎ∗ = 𝑎𝑟𝑔𝑚𝑖𝑛\∈] 𝑒𝑟𝑟O(ℎ).
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True	error:	𝑒𝑟𝑟O

Empirical	error:	𝑒𝑟𝑟S

𝑒𝑟𝑟O(ℎ∗)

𝑒𝑟𝑟S(ℎS )

𝑒𝑟𝑟O(ℎS)

𝑒𝑟𝑟S(ℎ∗)

The	true	error of	ℎS is	within	𝜖 of	the	optimal	true	error, 𝑒𝑟𝑟O ℎ∗ ,	if

For	all	ℎ ∈ 𝐻,	we	have	 𝑒𝑟𝑟S ℎ − 𝑒𝑟𝑟O ℎ ≤ %
_
.



Sample	Complexity	– General
For	any	instance	space 𝑋,	labels	𝑌 = {−1, 1},		and	distribution 𝑃 on
𝑋×𝑌,	consider	a	set	𝑆 of𝑚 i.i.d.	samples	from	𝑃.We	have

Pr
S∼Oc

∃ ℎ ∈ 𝐻, |𝑒𝑟𝑟S ℎ − 𝑒𝑟𝑟O ℎ | >
𝜖
2
≤ 2|𝐻|𝑒h%ij/_.

Theorem

Let	𝑚 ≥ _
%i

ln 𝐻 + ln _
)

.	For	any	instance	space	𝑋,	labels	Y =
{−1, 1},	distribution 𝑃 on 𝑋×𝑌,	with	probability	1 − 𝛿 over	i.i.d	draws	
of	set	𝑆 of𝑚 samples,	ℎS ∈ 𝐻,	with	least	empirical	error,	has true	error

𝑒𝑟𝑟O ℎS ≤ 𝑒𝑟𝑟O ℎ∗ + 𝜖.

Theorem:	Sample	Complexity	(non-zero	empirical	error)



Example:	Smart	Investing
• Task:	Pick	stock	analyst	based	on	past	performance.
• Experiment:	

• Review	analyst	prediction	“next	day	up/down”	for	past	10	days.	
Pick	analyst	that	makes	the	fewest	errors.

• Situation	1:	
• 2	stock	analyst	{A1,A2},	A1	makes	5	errors

• Situation	2:	
• 5	stock	analysts	{A1,A2,B1,B2,B3},	B2	best	with	1	error

• Situation	3:	
• 1005	stock	analysts	{A1,A2,B1,B2,B3,C1,…,C1000},	
C543	best	with	0	errors

• Question:Which	analysts	are	you	most	confident	in,	
A1,	 B2,	 C543?



Infinite	Hypothesis	Classes
Neural	NetworksLinear	thresholds	in	

Thresholds	on	the	line Intervals	on	the	real	line

𝑤 𝑊$,𝑊_, …

Sample	Complexity	bounds	for	finite	hypothesis	spaces	become	
meaningless:

2
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ln 𝐻 + ln
2
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𝑤 𝑤 𝑤′



Effective	Number	of	Hypotheses

Most	complex:	Many	unique	rows
𝟐𝒎 𝐮𝐧𝐢𝐪𝐮𝐞 𝐫𝐨𝐰𝐬

How	many	different	ways	hypotheses	in	𝐻 label	the	sample	set	𝑆?	

The	set	all	m-tuples	produced	by	hypotheses	in	𝐻 on	the	sample	set	𝑆

𝐻 𝑆 = ℎ 𝑥$ , ℎ 𝑥_ , ℎ 𝑥� , … , ℎ 𝑥j \∈]

Growth	function: 𝐻 𝑚 = max
S �j

|𝐻[𝑆]| is	the	largest	number	of	

unique	rows	that	𝐻 can	produce	on	any	set	of	𝑚 elements.

𝑥$ 𝑥_ 𝑥� … 𝑥j
ℎ$ -1 -1 1 -1
ℎ_ 1 -1 -1 1
ℎ� -1 1 -1 1
ℎ� 1 1 1 -1
⋮

𝑥$ 𝑥_ 𝑥� … 𝑥j
ℎ$ 1 1 -1 1
ℎ_ 1 1 -1 1
ℎ� 1 1 -1 1
ℎ� 1 1 -1 1
⋮ 1 1 -1 1

𝑆𝐻
𝑆𝐻

Least	complex:	Just	one	unique	row
𝟏 𝐮𝐧𝐢𝐪𝐮𝐞 𝐫𝐨𝐰

ℎ�(𝑥�)

Growth	function



Example	1:	Growth	Function

What	is 𝐻 𝑚 for	thresholds	on	a	line:
• ℎ� 𝑥 = 1 if	𝑥 ≥ 𝑤 and	−1 otherwise.
• 𝐻 is	infinitely	large
• 𝐻 𝑚 ?

• For	any𝑚 points,	𝐻 𝑚 is	the	number	of	intervals	they	divide	
the	line	to,	which	is	at	most	𝑚 + 1 ≪ 2j.

𝑤 ∈ ℝ
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Example	2:	Growth	Functions

What	is 𝐻 𝑚 for	intervals	on	the	line:
• ℎ�,�� 𝑥 = 1 if	𝑤� ≥ 𝑥 ≥ 𝑤 and	−1 otherwise
• 𝐻 is	infinitely	large

𝐻 𝑚 =
𝑚
0

+
𝑚
1

+
𝑚
2

= 1 + 𝑚 +
𝑚 𝑚 − 1

2
= 𝑂 𝑚_ ≪ 2j

• Where	 j� is	the	number	of	ways	we	can	choose	a	subset	of	size	𝑘
from	a	set	of	𝑚 items.

𝑚
𝑘

=
𝑚!

𝑚 − 𝑘 ! 𝑘!

𝑤 ∈ ℝ 𝑤� ∈ ℝ



Sample	Complexity	– growth	Function

Let	𝑚 ≥ ��
%

𝐥𝐧 𝑯 + ln $
)

for	some	constant	𝑐�.
For	any	instance	space	𝑋,	labels	Y = {−1, 1},	distribution 𝑃 on 𝑋×𝑌,	
with	probability	1 − 𝛿 over	i.i.d	draws	of	set	𝑆 of𝑚 samples,	we	have
Any ℎ ∈ 𝐻 that has 𝟎 𝐞𝐦𝐩𝐢𝐫𝐢𝐜𝐚𝐥 𝐞𝐫𝐫𝐨𝐫, has 𝐭𝐫𝐮𝐞 𝐞𝐫𝐫𝐨𝐫 of 𝑒𝑟𝑟O ℎ ≤ 𝜖.

𝐥𝐧(𝑯[𝟐𝒎])

• Difficult	to	interpret:	

𝑚 ≥ Ω
ln(𝐻[2𝑚])

𝜖

• If,	𝐻 𝑚 = 2j,	the	sample	complexity	is	

𝑚 ≥ Ω
𝑚
𝜖

Impossible	to	learn	
from	samples.

VC	
Dimension



VC	Dimension

𝐻 shatters	a	sample	set	𝑆 if	 𝐻 𝑆 = 2 S .
VC	Dimension	of 𝐻 is	the	size	of	the	largest	set 𝑆 that	can	be	
shattered	by 𝐻.

Shattering	and	VC	Dimension

ç VCDim 𝐻 : Largest	𝑚 for	which	𝐻 𝑚 = 2j .	

VC	Dimension	is	roughly	the	point	where	the	growth	function	stops	
being	exponential	and	becomes	polynomial.

• If VCDim H = ∞ then	𝐻 𝑚 = 2j for	all	𝑚.
à It	would	be	impossible	to	learn!
• If	VCDim H = 𝑑 then 𝐻 𝑚 < 𝑂(𝑚 ) for	all	𝑚.
àWe	can	learn!

When	is	learning	from	samples	possible?


