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Machine	Learning	for	
Intelligent	Systems

Instructors:	Nika	Haghtalab (this	time)	and	Thorsten	Joachims

Lecture	17:	Statistical	Learning	Theory	1

Reading:	UML	4
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Curved:
𝐶𝑢𝑟𝑣𝑒𝑑𝐺𝑟𝑎𝑑𝑒 = 100 − 0.75(95 − 𝑅𝑎𝑤𝑃𝑜𝑖𝑛𝑡𝑠)

Harder	time	with	the	following	concepts:
1. Perceptron	update	bound
2. Leave-on-out	error	of	Kernelized	SVM
3. Neural	Network	construction

Prelim
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xkcd comics
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Replication	Crisis	in	Science

4

Convince	me	of		your	Psychic	Abilities?

Game
• I’m	thinking	of	𝑚 bits	(0,1)
• If	somebody	in	the	class	guesses	my	bit	sequence,	that	
person	clearly	has	telepathic	abilities	– right?

• Think	of	a	6 digit	0,1	sequence.

1	0	1	0	1	0
Question:	

• If	at	least	one	of	|𝐻| players	guesses	the	bit	sequence	
correctly,	is	there	any	significant	evidence	that	they	have	
telepathic	abilities?

• How	large	would	𝑚 and	|𝐻| have	to	be	for	us	to	trust	this	
test?	
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Testing	for	psychic	power
Set	up:
• |𝐻| student	𝐻 = {ℎ@,… , ℎ|C|}
• 𝑚 bits	(length	of	sequence)
• 𝑝 = 0.5 probability	of	error	on	a	single	bit,	if	you’re	not	psychic.

Prob.	that	student	𝑖 guesses	my	code	without	being	psychic?
𝑃 ℎF correct ℎF not psychic) = 1− 𝑝 R

Prob.	at	least	one	student	guesses	my	code,	without	anyone	being	
psychic?

𝑃 ℎ@ correct ∨⋯∨ ℎ C correct nobody is psychic)
= 1− 1− 1− 𝑝 R |C|

How	long	should	the	sequence	be,	so	we	are	1 − 𝛿 confident?
𝑚 > log(@[\)(1 − 1− 𝛿 @/|C|)
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• Binomial	Distribution:	prob.	of	observing	𝑘 heads	in	𝑚 independent	
coin	tosses,	where	each	toss	is	heads	with	prob.	𝑝,	is

𝑃𝑟 𝑋 = 𝑘 𝑝,𝑚) =
𝑚!

𝑘! 𝑚 − 𝑘 !𝑝
a(1 − 𝑝)(R[a).

• Hoeffding’s inequality:	In	the	above	binomial	distribution,
Pr

𝑘
𝑚−𝑝 > 𝜖 ≤ 2 exp(−2𝑚𝜖g)

• Union	Bound:	For	any	events	𝐸F ,

𝑃𝑟 𝐸@ ∨ 𝐸g ∨⋯∨ 𝐸a ≤i
Fj@

a

𝑃𝑟 𝐸F .

• No	name	lemma:	 1 − 𝜖 ≤ 𝑒[k

Useful	Formulas

1

1

𝐞𝐱𝐩(−𝒙)
𝟏−𝒙

Pr 𝐸@ ∨ 𝐸g

𝐸@ 𝐸g

Pr E@ + Pr(Eg)
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Fundamental	Questions

Questions	in	Statistical	Learning	Theory:
• Trying	to	learn	a	classifier	from	𝐻?
• How	good	is	the	learned	rule	after	𝑚 examples?
• How	many	examples	is	needed	for	the	learned	rule	to	be	accurate?
• What	can	be	learned	and	what	cannot?
• Is	there	a	universally	best	learning	algorithm?

In	particular,	we	will	address:	
• What	kind	of	a	guarantee	on	the	true	error	of	a	classifier	can	I	get	
if	I	know	its	training	error?
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Recall	Prediction	as	Learning
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Sample	&	Generalization	Errors	

Sample	error of	hypothesis	ℎ on	samples	S = { 𝑥@, 𝑦@ , … ,
𝑥R, 𝑦R },	denoted	by	𝑒𝑟𝑟v ℎ is

𝑒𝑟𝑟v ℎ =
1
𝑚i

Fj@

R

1(ℎ 𝑥F ≠ 𝑦F)

Sample	(Empirical)	Error

Generalization	error	of	hypothesis	ℎ on	distribution	𝑃(𝑋, 𝑌),	denoted	
by	𝑒𝑟𝑟y ℎ is

𝑒𝑟𝑟y ℎ = Pr
z,{ ∼y

ℎ 𝑥 ≠ 𝑦 =i
Fj@

R

1 ℎ 𝑥 ≠ 𝑦 ⋅ 𝑃(𝑋 = 𝑥, 𝑌 = 𝑦)

Generalization	(Prediction/true)	Error
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Real-world	Process
𝑃(𝑋, 𝑌)

Training	data	set	Strain
{ 𝑥@, 𝑦@ ,… , 𝑥R, 𝑦R } Learner Testing	data	set	Stest

𝑥R~@, 𝑦R~@ ,… ,

drawn	i.i.d. drawn	i.i.d.

hStrain

Goal: Find	ℎwith	small	prediction	error	𝑒𝑟𝑟y ℎ on	𝑃 𝑋, 𝑌 .
Strategy:	Find	an	ℎ ∈ 𝐻with	small	sample	error	𝑒𝑟𝑟v����� ℎ on	
training	dataset 𝑆���F�.
Test	the	learned	ℎ to	measure	its	test	error	𝑒𝑟𝑟v���� ℎ on	a	
separate	testing	data	set	𝑆����.

Prediction	as	Learning
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Let’s	come	back
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What	kind	of	a	guarantee	on	the	true	error	of	a	classifier	can	I	
get	if	I	know	its	training	error?

Today’s	plan:
• Zero	empirical	error: If	the	rule	I	learned	from	H achieves	
zero	error	on	the	samples	(𝑒𝑟𝑟v ℎ = 0),	how	large	is	𝑒𝑟𝑟y ℎ ?

• Non-zero	empirical	error: How	good	is	the	true	error	of	a	
hypothesis	from	𝐻 that	that	performs	well	on	samples?

Today’s	assumption:	The	hypothesis	set	H is	finite.	

Generalization	Error	Bounds
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If	the	hypothesis	I	learned	from	H achieves	zero	error	on	the	samples	
(𝑒𝑟𝑟v ℎ = 0),	how	large	is	𝑒𝑟𝑟y ℎ ?

• AssumeH is	finite.
• Assume	Realizability:	There	is	a	consistent	classifier.
àThere	is	always	one	ℎ ∈ H that	𝑒𝑟𝑟y ℎ = 0 – one	person	is	psychic.

Algorithm	ℒ takes	a	set	𝑆 of	𝑚 samples	from	𝑃 and	picks	ℎv that	has	0	
empirical	error.	What’s	the	bound	on	𝑒𝑟𝑟y ℎ ?
1. Fix	a	hypothesis	ℎ ∈ H before	seeing	𝑆.	What’s	the	probability	that	

𝑒𝑟𝑟y ℎ > 𝜖, but	𝑒𝑟𝑟v ℎ = 0?
2. What’s	the	probability	that	𝑒𝑟𝑟y ℎv > 𝜖, but	𝑒𝑟𝑟v ℎv = 0?

Zero	Empirical	Error
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Sample	Complexity	– 0	Empirical	Error

For	any	instance	space 𝑋 and	set	of	labels	𝑌 = {−1, 1} and	for	any	
distribution 𝑃 on 𝑋×𝑌,	consider	a	set	𝑆 of𝑚 i.i.d.	samples	from	𝑃,	we	
have

Pr
v∼y�

∃ ℎ ∈ 𝐻, such that 𝑒𝑟𝑟v ℎ = 0, but 𝑒𝑟𝑟y ℎ > 𝜖 ≤ |𝐻|𝑒[kR.

Theorem

Let	𝑚 ≥ @
k
ln 𝐻 + ln @

�
.	For	any	instance	space	𝑋,	labels	Y =

{−1, 1},	distribution 𝑃 on 𝑋×𝑌,	with	probability	1 − 𝛿 over	i.i.d	draws	
of	set	𝑆 of𝑚 samples,	we	have
Any ℎ ∈ 𝐻 that has 𝟎 𝐞𝐦𝐩𝐢𝐫𝐢𝐜𝐚𝐥 𝐞𝐫𝐫𝐨𝐫, has 𝐭𝐫𝐮𝐞 𝐞𝐫𝐫𝐨𝐫 of 𝑒𝑟𝑟y ℎ ≤ 𝜖.

Theorem:	Sample	Complexity	(zero	empirical	error)

Learning	Algorithm: Given	a	sample	set	𝑆 and	hypothesis	class	ℎ ∈
𝐻,	if	there	is	a	ℎv ∈ 𝐻 that	is	consistentwith	𝑆,	return	ℎv.	(Eqv.	Return	
ℎv in	version	space	VS(𝐻, 𝑆))	
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