Machine Learning for
Intelligent Systems

Lecture 13: Deep Neural Networks

Reading: UML 20-20.3

Instructors: Nika Haghtalab (this time) and Thorsten Joachims

(Stochastic) Gradient Descent

Many learning problems can be written as the following
optimization on the sample set S = {(x1, y1), ..., (X;,, Vi) }.

n
. — — — 1 — -
ming Ls(W) for Le(w) = R(w)+ Cﬁ z L(w-Xj,yi)
i=1

Gradient Descent Update: w(*D) « w® — . vLo(w®)
n
—(t+1) — (1) —> 77tC —(t) . 2
w =W —n,VR(W) —— = VL(W® - %;,v;)
i=1

Stochastic Gradient Descent Update: Take a random (x;, y;) ~ S

wttD « WO —n VRW) — n,C VL(W® - %;,y;)

AdaGrad

Adaptive Gradient:

* Adapt the learning rate for each parameter based on the
previous gradients.

— >

For all coordinates i:

o B aL(w®)
Derivative Jitr = Iw;
t+1 t Jit
Update Wi() Wi() _

1 2
\/ 0.01+%7-1(gir)

Y

Stabilizer Sum-square of derivatives

Momentum Method

Adaptive Gradient:

* Use previous gradients to encourage movement in important

directions.
—

Exp-weighted Average Gradient G® « (1 —8) G D + gvL(w®)

Sum gradients

Update wttD B® — pG®

SGD on Non-Convex

Non convex functions are challenging

Under specific assumptions SGD
provably converges to a local minimum

Neural networks are non-convex and
SGD is used for training them.

Linear Model

We can represent a linear function as single layer neural

network.
@\ Sign function

Naive Hidden Layers

Input layer Hidden layer = Qutput

77

Linear function of linear functions, is linear.
vi(X-wWH+b)+v,(x-w +b")=x-(v;Ww+v,W) + (vib + vyb")

Beyond linearity: We need each layer to transform a linear function to
something else.

Common Activation Functions

Use a non-linear activation function on nodes of a hidden layer.

Name Function Gradient Graph

_ _ 0 x+#0

Binary step sign(x) {N/A x=0 —/—
d (x) - 1

sigmoi oX) =7 T exp(—x) o(x)(1—o(x))

Tanh tanh(x) = xp() — exp (=) (1 — tanh())2 f
exp(x) + exp(—x) aniix

Rectified
Linear relu(x) = max(x, 0) {(1) i i 8 J
(ReLu)

Sometime, o(x) denotes the “generic” notion of activation function, not necessarily sigmoid.

Power of Neural Networks

Represent XOR with 1 hidden layer. +

0

1 (1

B ;‘— sign(sign(xy +x, +0.1)
Gﬁ ' \ 1 @ +Sign(—1x1 —sz + 0.1)

0.1 @ —-1))

Multi Layer Neural Network

Input layer Hidden layers ~ Output

Vector of weights going from layer i to the j** node of layer i + 1: Wi j
| o (Vi-Wi1) |

Vector of values in layeri + 1, v, = (0(131--5Wi,k)> Output: 0 (va)

Universal Approximators

[f we allow a single hidden layer (depth 2 network) with very large
width, we can approximate any continuous function on R" .

How large?
* For boolean functions, we need at least exp(n) width.
* Restricting ourselves to polynomial size networks

« = Can’t approximate all functions

- Reduce the chance of overfitting } Bias-Variance Tradeoff

Other Types of Neural Networks

* Traditional multi-layer networks:
—> Layers are fully connected
—>Bad for overfitting

Other types

* Convolutional Neural Networks (CNNs)

—>Some structured layers to learn features

—>1-2 layers of fully connected network at the end
* Recurrent Neural Networks (RNNs)

- Nodes can feed forward or backward.

