Machine Learning for
Intelligent Systems

Lecture 13: Deep Neural Networks

Reading: UML 20-20.3

Instructors: Nika Haghtalab (this time) and Thorsten Joachims



(Stochastic) Gradient Descent

Many learning problems can be written as the following
optimization on the sample set S = {(x1, y1), ..., (X;,, Vi) }.
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Stochastic Gradient Descent Update: Take a random (x;, y;) ~ S
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AdaGrad

Adaptive Gradient:

* Adapt the learning rate for each parameter based on the
previous gradients.
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Momentum Method

Adaptive Gradient:

* Use previous gradients to encourage movement in important

directions.
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Exp-weighted Average Gradient G® « (1 —8) G D + gvL(w®)

Sum gradients

Update wttD  B® — pG®



SGD on Non-Convex

Non convex functions are challenging

Under specific assumptions SGD
provably converges to a local minimum

Neural networks are non-convex and
SGD is used for training them.



Linear Model

We can represent a linear function as single layer neural

network.
@\ Sign function




Naive Hidden Layers

Input layer Hidden layer = Qutput

77

Linear function of linear functions, is linear.
vi(X-wWH+b)+v,(x-w +b")=x-(v;Ww+v,W) + (vib + vyb")

Beyond linearity: We need each layer to transform a linear function to
something else.



Common Activation Functions

Use a non-linear activation function on nodes of a hidden layer.

Name Function Gradient Graph

_ _ 0 x+#0

Binary step sign(x) {N/A x=0 —/—
d (x) - 1

sigmoi oX) =7 T exp(—x) o(x)(1—o(x))

Tanh tanh(x) = xp() — exp (=) (1 — tanh( ))2 f
exp(x) + exp(—x) aniix

Rectified
Linear relu(x) = max(x, 0) {(1) i i 8 J
(ReLu)

Sometime, o(x) denotes the “generic” notion of activation function, not necessarily sigmoid.



Power of Neural Networks

Represent XOR with 1 hidden layer. +
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Multi Layer Neural Network

Input layer Hidden layers ~ Output

Vector of weights going from layer i to the j** node of layer i + 1: Wi j
| o (Vi-Wi1) |

Vector of values in layeri + 1, v, = (0(131--5Wi,k)> Output: 0 (va)



Universal Approximators

[f we allow a single hidden layer (depth 2 network) with very large
width, we can approximate any continuous function on R" .

How large?
* For boolean functions, we need at least exp(n) width.
* Restricting ourselves to polynomial size networks

« = Can’t approximate all functions

- Reduce the chance of overfitting } Bias-Variance Tradeoff



Other Types of Neural Networks

* Traditional multi-layer networks:
—> Layers are fully connected
—>Bad for overfitting

Other types

* Convolutional Neural Networks (CNNs)

—>Some structured layers to learn features

—>1-2 layers of fully connected network at the end
* Recurrent Neural Networks (RNNs)

- Nodes can feed forward or backward.



