

Non-Linear Problems

Problem:

- some tasks have non-linear structure
- no hyperplane is sufficiently accurate How can SVMs learn non-linear classification rules?

Extending the Hypothesis Space

The separating hyperplane in feature space is degree two polynomial in input space.

Example

- Input Space: $\vec{x}=\left(x_{1}, x_{2}\right)$
(2 attributes)
- Feature Space: $\Phi(\vec{x})=\left(x_{1}^{2}, x_{2}^{2}, x_{1}, x_{2}, x_{1} x_{2}, 1\right)$ (6 attributes)

Kernels

- Problem:
- Very many Parameters!
- Example: Polynomials of degree p over N attributes in input space lead to $\mathrm{O}\left(\mathrm{N}^{\mathrm{P}}\right)$ attributes in feature space!
- Solution:
- The dual OP depends only on inner products
\rightarrow Kernel Functions $K(\vec{a}, \vec{b})=\Phi(\vec{a}) \cdot \Phi(\vec{b})$
- Example:
- For $\Phi(\vec{x})=\left(x_{1}^{2}, x_{2}^{2}, \sqrt{2} x_{1}, \sqrt{2} x_{2}, \sqrt{2} x_{1} x_{2}, 1\right)$ calculating $K(\vec{a}, \vec{b})=[\vec{a} \cdot \vec{b}+1]^{2}$ computes inner product in feature space.
\rightarrow no need to represent feature space explicitly.

Examples of Kernels

Radial Basis Function $K(\vec{a}, \vec{b})=\exp \left(-\gamma[\vec{a}-\vec{b}]^{2}\right)$

What is a Valid Kernel?

Definition: Let X be a nonempty set. A function is a valid kernel in X if for all m and all $x_{1}, \ldots, x_{m} \in X X$ it produces a Gram matrix

$$
G_{i j}=K\left(x_{i}, x_{j}\right)
$$

that is symmetric

$$
G=G^{T}
$$

and positive semi-definite

$$
\forall \vec{\alpha}: \vec{\alpha}^{T} G \vec{\alpha} \geq 0
$$

Properties of SVMs with Kernels

- Expressiveness
- SVMs with Kernel can represent any boolean function (for appropriate choice of kernel)
- SVMs with Kernel can represent any sufficiently "smooth" function to arbitrary accuracy (for appropriate choice of kernel)
- Computational
- Objective function has no local optima (only one global)
- Independent of dimensionality of feature space
- Design decisions
- Kernel type and parameters
- Value of C

Kernels for Non-Vectorial Data

- Applications with Non-Vectorial Input Data \rightarrow classify non-vectorial objects
- Protein classification (x is string of amino acids)
- Drug activity prediction (x is molecule structure)
- Information extraction (x is sentence of words)
- Etc.
- Applications with Non-Vectorial Output Data
\rightarrow predict non-vectorial objects
- Natural Language Parsing (y is parse tree)
- Noun-Phrase Co-reference Resolution (y is clustering)
- Search engines (y is ranking)
\rightarrow Kernels can compute inner products efficiently!

Kernels for Discrete and Structured Data

Kernels for Sequences: Two sequences are similar, if the have many common and consecutive subsequences.
Example [Lodhi et al., 2000]: For $0 \leq \lambda \leq 1$ consider the following features space

	c-a	c-t	a-t	b-a	b-t	c-r	a-r	b-r
ϕ (cat)	λ^{2}	λ^{3}	λ^{2}	0	0	0	0	0
ϕ (car)	λ^{2}	0	0	0	0	λ^{3}	λ^{2}	0
ϕ (bat)	0	0	λ^{2}	λ^{2}	λ^{3}	0	0	0
ϕ (bar)	0	0	0	λ^{2}	0	0	λ^{2}	λ^{3}

$\Rightarrow K(c a r, c a t)=\lambda^{4}$, efficient computation via dynamic programming

