Optimal Hyperplanes and Support Vector Machines

CS4780/5780 – Machine Learning Fall 2019

Nika Haghtalab & Thorsten Joachims
Cornell University

Reading: UML 15.1, 15.2

Example: Reuters Text Classification

Optimal Hyperplanes

- Assumption:
 - Training examples are linearly separable.

Margin of a Linear Classifier

• Definition: For a linear classifier h_w , the margin γ of an example (x,y) with $x \in \Re^N$ and $y \in \{-1,+1\}$ is

$$\gamma = y(w \cdot x + b)$$

- Definition: The margin is called geometric margin, if ||w|| = 1. For general w, the term functional margin is used to indicate that the norm of w is not necessarily 1.
- Definition: The (hard) margin of a homogeneous linear classifier $h_{\it w}$ on sample $\it S$ is

$$\gamma = \min_{(x,y)\in S} y(w \cdot x + b)$$

Hard-Margin Separation

• Goal:

Find hyperplane with the largest distance to the

closest training examples.

- Support Vectors:
 - Examples with minimal distance (i.e. margin).

Non-Separable Training Data

- Limitations of hard-margin formulation
 - For some training data, there is no separating hyperplane.
 - Complete separation (i.e. zero training error) can lead to suboptimal prediction error.

Soft-Margin Separation

Idea: Maximize margin and minimize training

Hard-Margin OP (Primal): $\lim_{ec{w},b} \frac{1}{2} \vec{w} \cdot \vec{w}$ s.t. $y_1(\vec{w} \cdot \vec{x}_1 + b) \geq 1$ \dots $y_n(\vec{w} \cdot \vec{x}_n + b) \geq 1$

Soft-Margin OP (Primal):
$$\min_{\vec{w},\vec{\xi},b} \frac{1}{2} \vec{w} \cdot \vec{w} + C \sum_{i=1}^{s} \xi_i$$

$$s.t. \ y_1(\vec{w} \cdot \vec{x}_1 + b) \ge 1 - \xi_1 \land \xi_1 \ge 0$$

$$\cdots$$

$$y_n(\vec{w} \cdot \vec{x}_n + b) \ge 1 - \xi_n \land \xi_n \ge 0$$

- Slack variable ξ_i measures by how much (x_i, y_i) fails to achieve margin γ
- $\Sigma \xi_i$ is upper bound on number of training errors
- *C* is a parameter that controls tradeoff between margin and training error.

Controlling Soft-Margin Separation

- $\Sigma \xi_i$ is upper bound on number of training errors
- C is a parameter that controls trade-off between margin and training error.

Soft-Margin OP (Primal):
$$\min_{\vec{w}, \vec{\xi}, b} \frac{1}{2} \vec{w} \cdot \vec{w} + C \sum_{i=1}^{n} \xi_i$$
 $s.t.$ $y_1(\vec{w} \cdot \vec{x}_1 + b) \geq 1 - \xi_1 \wedge \xi_1 \geq 0$...
$$y_n(\vec{w} \cdot \vec{x}_n + b) \geq 1 - \xi_n \wedge \xi_n \geq 0$$

Example Reuters "acq": Varying C

