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Machine	Learning	for	
Intelligent	Systems

Instructors:	Nika	Haghtalab (this	time)	and	Thorsten	Joachims

Lecture	7:	Convergence	of	Perceptron

Reading:	UML	9.1

Linear	Classifiers
For	a	vector	𝑤 ∈ ℝ$ and	𝑏 ∈ ℝ, the	hypothesis	ℎ(,):ℝ$ → ℝ defined	
bellow	is	called	a	linear	classifier/linear	predictor/halfspace	

ℎ(,) �⃗� = 𝑠𝑖𝑔𝑛(𝑤 ⋅ �⃗� + 𝑏) = 7+1 𝑤 ⋅ �⃗� + 𝑏 > 0
−1 𝑤 ⋅ �⃗� + 𝑏 ≤ 0

ℎ(

𝑤 𝑤, ∥ 𝑤 ∥= 1

ℎ(,)

Homogenous	linear	
classifier:	𝑏 = 0

+
- +

-

∥ 𝑤 ∥
𝑏

Homogenous	vs.	Non-homogenous

Any	d-dimensional	learning	problem	for	non-homogenous	linear	
classifiers has	a	homogenous form	in	(d+1)	dimension.

Non-Homogenous	
𝐻𝑆$ = {ℎ𝒘,𝒃| 𝑤 ∈ ℝ$ , 𝑏 ∈ ℝ}

Homogenous
𝐻𝑆EFGFHIJFKL

$MN = {ℎ𝒘O| 𝑤′ ∈ ℝ$MN}

�⃗� �⃗�′ = (�⃗�, +1)
𝑤, 𝑏 𝑤O = (𝑤, 𝑏)

𝑤 ⋅ �⃗� + 𝑏 𝑤O ⋅ �⃗�O = 𝑤 ⋅ �⃗� + 𝑏

Without	loss	of	generality,	focus	on	homogenous	linear	classifiers.

Improving	a	linear	classifier

This	time:	Start	with	a	guess	and	improve	it.

(�⃗�,−1)

𝑤(N)

Move	away	from	misclassified	
negative	points:	𝑤− �⃗�

If	there	is	a	homogeneous	linear	classifier	that	is	consistent	with	
{ �⃗�N, 𝑦N , �⃗�l, 𝑦l ,… , (�⃗�G, 𝑦G)},	how	can	we	find	it?

Last	time:	Do	it	with	a	linear	program

−�⃗�
𝑤(N) − �⃗�

ℎ((q)
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𝑤(l)

ℎ((r)

Improving	a	linear	classifier

This	time:	Start	with	a	guess	and	improve	it.
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If	there	is	a	homogeneous	linear	classifier	that	is	consistent	with	
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𝑤(l)

(�⃗�,+1)

Move	towards	misclassified	
positive	points:	𝑤+ �⃗�

+�⃗�
𝑤(l) + �⃗�

ℎ((r)
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Improving	a	linear	classifier

This	time:	Start	with	a	guess	and	improve	it.

Move	away	from	misclassified	
negative	points:	𝑤− �⃗�

If	there	is	a	homogeneous	linear	classifier	that	is	consistent	with	
{ �⃗�N, 𝑦N , �⃗�l, 𝑦l ,… , (�⃗�G, 𝑦G)},	how	can	we	find	it?

Last	time:	Do	it	with	a	linear	program

Move	towards	misclassified	
positive	points:	𝑤+ �⃗�

𝑤(l) + �⃗�

Input:	Training	data	set	{ �⃗�N, 𝑦N , �⃗�l, 𝑦l ,… , (�⃗�G, 𝑦G)}
Initialize	𝑤(s) = 0,… , 0 , 𝑡 = 0
While	there	is 𝑖 ∈ [𝑚],	such	that	𝑦x 𝑤 y ⋅ �⃗�x ≤ 0 then,

• 𝑤(yMN) = 𝑤(y) + 𝑦x �⃗�x

• 𝑡 ← 𝑡 + 1
End	While
Output	𝑤(y)

Perceptron	(homogeneous	&	batch)

𝑤(y) + �⃗�x for	positive	instances

𝑤(y) − �⃗�x for	negative	instances

Frank Rosenblatt
@ Cornell!

misclassified

Example

• 𝑤(s) = (0, 0)
à 𝑦N(𝑤(s) ⋅ �⃗�N) = 0 ≤ 0

• 𝑤(N) = 𝑤(s) + 𝑥N = 1,2
à 𝑦N(𝑤(N) ⋅ �⃗�N) = 5 > 0
à 𝑦l(𝑤(N) ⋅ �⃗�l) = 4 > 0
à 𝑦~(𝑤(N) ⋅ �⃗�~) = 3 > 0
à 𝑦�(𝑤(N) ⋅ �⃗��) = −1 ≤ 0

• 𝑤(l) = 𝑤(N) − 𝑥� = 2,1

𝑥N

𝑥l

𝑥~

𝑥�

Margin	&	Convergence

Given	a	data	set	S = { �⃗�N, 𝑦N , �⃗�l, 𝑦l ,… , (�⃗�G, 𝑦G)} and	a	linear	
classifier	ℎ( that	is	consistent	with	S,	that	is,	𝑦x(𝑤 ⋅ �⃗�x) > 0,	the	
geometric	margin of	ℎ( is	defined	as:

𝛾 ≔ min
x∈�

𝑦x(𝑤 ⋅ �⃗�x)
∥ 𝑤 ∥

Margin 𝛾 is	the	distance	of	the	closest
instance to	hyperplane 𝑤 ⋅ �⃗� = 0.

Margin

ℎ(

𝑤∗

(�⃗�N,+1)(�⃗�l,+1)

(�⃗�~,+1)(�⃗��,−1)

(�⃗��,−1)
𝛾

Convergence	of	Perceptron

Given	a	data	set	S = { �⃗�N, 𝑦N , �⃗�l, 𝑦l ,… , (�⃗�G, 𝑦G)} and	radius	𝑅
such	that	∥ �⃗�x ∥≤ 𝑅 for	all	𝑖 ∈ 𝑚 .

If	ℎ(∗ is	consistent	with	Swith	margin	𝛾 ≔ min
x∈�

��((∗⋅�⃗�)
∥(∗∥

then	
Perceptron	makes	at	most	 ⁄𝑅l 𝛾l updates	before	predicting	
every	label	perfectly.

Theorem:	Convergence	of	Perceptron

Idea:	ℎ(∗ has	𝛾margin	→ there	is	wiggle	room.
à Show	that	within	 ⁄𝑡 = 𝑅l 𝛾l,	

𝑤y is	close	to	𝑤∗ in	angle.		

ℎ(∗

𝑤∗

Proof	Ideas

Perceptron	makes	at	most	 ⁄𝑅l 𝛾l updates	before	predicting	every	

label	perfectly.	Recall	margin	𝛾 ≔ min
x∈�

��((∗⋅�⃗�)
∥(∗∥

.

Theorem:	Convergence	of	Perceptron

Idea:	Proof	by	Contradiction.	Show	that	if	within	 ⁄𝑡 > 𝑅l 𝛾l,	

cos( 𝜃(𝑤∗,𝑤 yMN )) =
𝑤∗ ⋅ 𝑤 yMN

∥ 𝑤∗ ∥∥ 𝑤(yMN) ∥ > 1

Plan:
• Assume	𝑤∗ is	normalized	to	be	unit	vector	àmargin	doesn’t	change.
1. Show	that	𝑤∗ ⋅ 𝑤 yMN is	large	(find	a	lower	bound).
2. Show	that	∥ 𝑤(yMN) ∥ is	not	too	large	(find	an	upper	bound).
à So,	if	 ⁄𝑡 > 𝑅l 𝛾l,	the	cosine	will	be	larger	than	1	à Contradiction.

Impossible
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Recall:	Example

• 𝑤(s) = (0, 0)
à 𝑦N(𝑤(s) ⋅ �⃗�N) = 0

• 𝑤(N) = 𝑤(s) + 𝑥N = 1,2
à 𝑦N(𝑤(N) ⋅ �⃗�N) = 5 > 0
à 𝑦l(𝑤(N) ⋅ �⃗�l) = 4 > 0
à 𝑦~(𝑤(N) ⋅ �⃗�~) = 3 > 0
à 𝑦�(𝑤(N) ⋅ �⃗��) = −1 ≤ 0

• 𝑤(l) = 𝑤(N) − 𝑥� = 2,1

𝑥N

𝑥l

𝑥~

𝑥�

• Update	on	(𝑥l, 𝑦l)
à𝑤(N) = (2, 1) converges	
in	1	step.

• Update	on	(𝑥~, 𝑦~)
à𝑤(N) = 1, 1
Update	on	(𝑥�, 𝑦�)
à𝑤(l) = 2, 0

Online	Perceptron

Given	a	sequence	of	data	 �⃗�N, 𝑦N , �⃗�l, 𝑦l ,… , (�⃗�G, 𝑦G) one	by	

one,	with	radius	𝑅 and	margin	𝛾 ≔ min
x∈�

��((∗⋅�⃗�)
∥(∗∥

for	some	𝑤∗.

Online	prediction:	At	each	time	use	the	current	𝑤 to	predict	
the	label	of	incoming	 �⃗�x, 𝑦x ,	update	if	needed.

Mistake	Bound: The	number	of	mistake	that	perceptron	
makes	is	at	most	 ⁄𝑅l 𝛾l.

Theorem:	Mistake	Bound	of	Online	Perceptron

Example:	Reuters	Text	Classification

“optimal hyperplane”


