Machine Learning for Intelligent Systems

Lecture 7: Convergence of Perceptron

Reading: UML 9.1

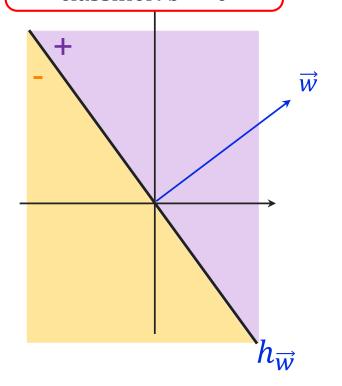
Instructors: Nika Haghtalab (this time) and Thorsten Joachims

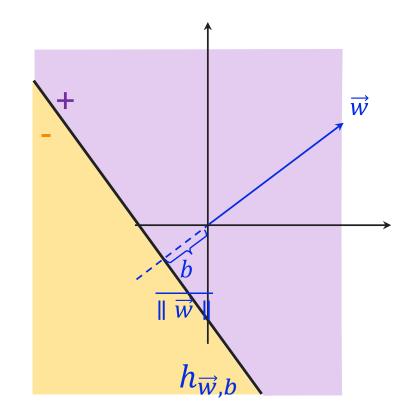
Linear Classifiers

For a vector $\vec{w} \in \mathbb{R}^d$ and $b \in \mathbb{R}$, the hypothesis $h_{\vec{w},b} : \mathbb{R}^d \to \mathbb{R}$ defined bellow is called a **linear classifier/linear predictor/halfspace**

$$h_{\overrightarrow{w},b}(\overrightarrow{x}) = sign(\overrightarrow{w} \cdot \overrightarrow{x} + b) = \begin{cases} +1 & \overrightarrow{w} \cdot \overrightarrow{x} + b > 0 \\ -1 & \overrightarrow{w} \cdot \overrightarrow{x} + b \le 0 \end{cases}$$

Homogenous linear classifier: b = 0





Homogenous vs. Non-homogenous

Any d-dimensional learning problem for **non-homogenous linear classifiers** has a **homogenous** form in (d+1) dimension.

Non-Homogenous $HS^{d} = \{h_{\overrightarrow{w}, b} \overrightarrow{w} \in \mathbb{R}^{d}, b \in \mathbb{R}\}$	Homogenous $HS_{homogenous}^{d+1} = \{h_{\overrightarrow{w}'} \overrightarrow{w}' \in \mathbb{R}^{d+1}\}$
$ec{\chi}$	$\vec{x}' = (\vec{x}, +1)$
\overrightarrow{w} , b	$\overrightarrow{w}' = (\overrightarrow{w}, b)$
$\overrightarrow{w} \cdot \overrightarrow{x} + b$	$\vec{w}' \cdot \vec{x}' = \vec{w} \cdot \vec{x} + b$

Without loss of generality, focus on homogenous linear classifiers.

If there is a homogeneous linear classifier that is consistent with $\{(\vec{x}_1, y_1), (\vec{x}_2, y_2), ..., (\vec{x}_m, y_m)\}$, how can we find it?

Last time: Do it with a linear program

This time: Start with a guess and improve it.

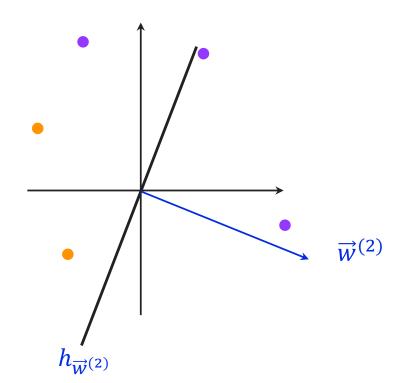
Move away from misclassified negative points: $\vec{w} - \vec{x}$

If there is a homogeneous linear classifier that is consistent with $\{(\vec{x}_1, y_1), (\vec{x}_2, y_2), ..., (\vec{x}_m, y_m)\}$, how can we find it?

Last time: Do it with a linear program

This time: Start with a guess and improve it.

Move away from misclassified negative points: $\vec{w} - \vec{x}$

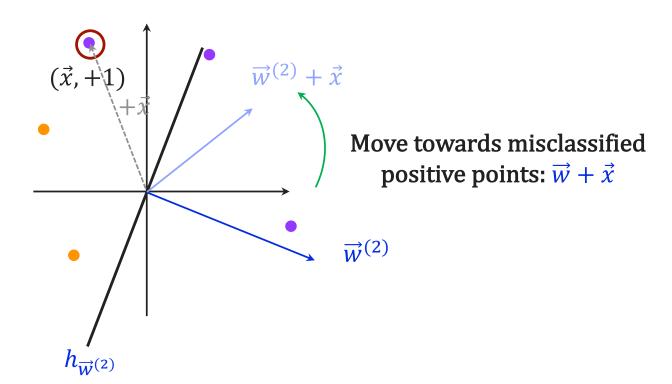


If there is a homogeneous linear classifier that is consistent with $\{(\vec{x}_1, y_1), (\vec{x}_2, y_2), ..., (\vec{x}_m, y_m)\}$, how can we find it?

Last time: Do it with a linear program

This time: Start with a guess and improve it.

Move away from misclassified negative points: $\vec{w} - \vec{x}$

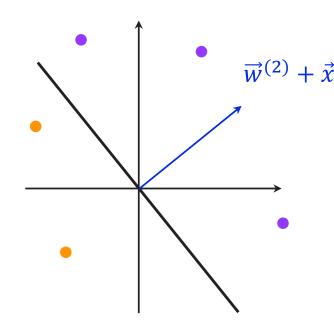


If there is a homogeneous linear classifier that is consistent with $\{(\vec{x}_1, y_1), (\vec{x}_2, y_2), ..., (\vec{x}_m, y_m)\}$, how can we find it?

Last time: Do it with a linear program

This time: Start with a guess and improve it.

Move away from misclassified negative points: $\vec{w} - \vec{x}$



Move towards misclassified positive points: $\vec{w} + \vec{x}$

Perceptron (homogeneous & batch)

Input: Training data set $\{(\vec{x}_1, y_1), (\vec{x}_2, y_2), ..., (\vec{x}_m, y_m)\}$

Initialize $\vec{w}^{(0)} = (0, ..., 0), t = 0$

While there is $i \in [m]$, such that $y_i(\overrightarrow{w}^{(t)} \cdot \overrightarrow{x}_i) \leq 0$ then,

misclassified

•
$$\vec{w}^{(t+1)} = \vec{w}^{(t)} + y_i \vec{x}_i$$

$$\begin{cases} \vec{w}^{(t)} + \vec{x}_i & \text{for positive instances} \\ \vec{w}^{(t)} - \vec{x}_i & \text{for negative instances} \end{cases}$$

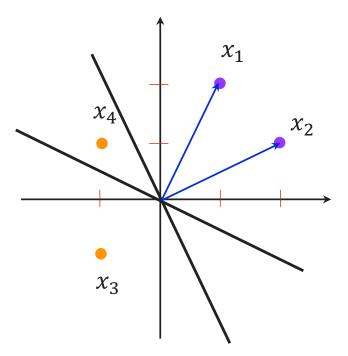
•
$$t \leftarrow t + 1$$

End While

Output $\vec{w}^{(t)}$

Frank Rosenblatt @ Cornell!

Example



	x_1	x_2	y
$\vec{x}_1 = ($	1	2)	$y_1 = 1$
$\vec{x}_2 = ($	2	1)	$y_2 = 1$
$\vec{x}_3 = ($	-1	-1)	$y_3 = -1$
$\vec{x}_4 = ($	-1	1)	$y_3 = -1$

•
$$\vec{w}^{(0)} = (0,0)$$

• $y_1(\vec{w}^{(0)} \cdot \vec{x}_1) = 0 \le 0$
• $\vec{w}^{(1)} = \vec{w}^{(0)} + x_1 = (1,2)$
• $y_1(\vec{w}^{(1)} \cdot \vec{x}_1) = 5 > 0$
• $y_2(\vec{w}^{(1)} \cdot \vec{x}_2) = 4 > 0$
• $y_3(\vec{w}^{(1)} \cdot \vec{x}_3) = 3 > 0$
• $y_4(\vec{w}^{(1)} \cdot \vec{x}_4) = -1 \le 0$
• $\vec{w}^{(2)} = \vec{w}^{(1)} - x_4 = (2,1)$

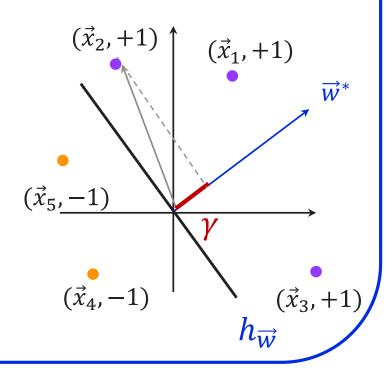
Margin & Convergence

Margin

Given a data set $S = \{(\vec{x}_1, y_1), (\vec{x}_2, y_2), ..., (\vec{x}_m, y_m)\}$ and a linear classifier $h_{\overrightarrow{w}}$ that is consistent with S, that is, $y_i(\overrightarrow{w} \cdot \vec{x}_i) > 0$, the geometric margin of $h_{\overrightarrow{w}}$ is defined as:

$$\gamma \coloneqq \min_{i \in S} \ \frac{y_i(\vec{w} \cdot \vec{x}_i)}{\| \vec{w} \|}$$

Margin γ is the distance of the closest instance to hyperplane $\vec{w} \cdot \vec{x} = 0$.



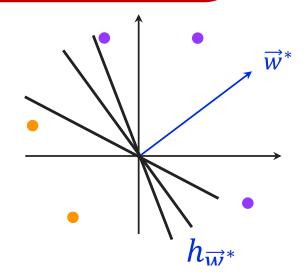
Convergence of Perceptron

Theorem: Convergence of Perceptron

Given a data set $S = \{(\vec{x}_1, y_1), (\vec{x}_2, y_2), \dots, (\vec{x}_m, y_m)\}$ and radius R such that $\|\vec{x}_i\| \le R$ for all $i \in [m]$.

If $h_{\overrightarrow{w}^*}$ is consistent with S with margin $\gamma \coloneqq \min_{i \in S} \frac{y_i(\overrightarrow{w}^* \cdot \overrightarrow{x}_i)}{\|\overrightarrow{w}^*\|}$ then Perceptron makes at most R^2/γ^2 updates before predicting every label perfectly.

Idea: $h_{\overrightarrow{w}^*}$ has γ margin \rightarrow there is wiggle room. \rightarrow Show that within $t = R^2/\gamma^2$, \overrightarrow{w}^t is close to \overrightarrow{w}^* in angle.



Proof Ideas

Theorem: Convergence of Perceptron

Perceptron makes at most R^2/γ^2 updates before predicting every

label perfectly. Recall margin
$$\gamma \coloneqq \min_{i \in S} \frac{y_i(\vec{w}^* \cdot \vec{x}_i)}{\|\vec{w}^*\|}$$
.

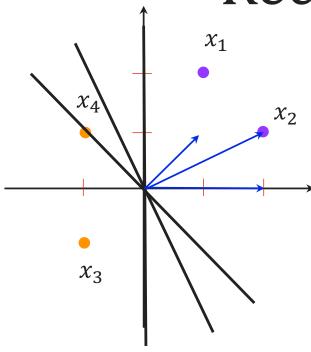
Idea: Proof by Contradiction. Show that if within $t > R^2/\gamma^2$,

$$\cos(\theta(\overrightarrow{w}^*, \overrightarrow{w}^{(t+1)})) = \frac{\overrightarrow{w}^* \cdot \overrightarrow{w}^{(t+1)}}{\|\overrightarrow{w}^*\| \|\overrightarrow{w}^{(t+1)}\|} > 1 \qquad \text{Impossible}$$

Plan:

- Assume \vec{w}^* is normalized to be unit vector \rightarrow margin doesn't change.
- 1. Show that $\overrightarrow{w}^* \cdot \overrightarrow{w}^{(t+1)}$ is large (find a lower bound).
- 2. Show that $\| \overrightarrow{w}^{(t+1)} \|$ is not too large (find an upper bound).
- \rightarrow So, if $t > R^2/\gamma^2$, the cosine will be larger than $1 \rightarrow$ Contradiction.

Recall: Example



•	Update on (x_2, y_2))
	$\rightarrow \overrightarrow{w}^{(1)} = (2,1)$	converges
	in 1 step.	

• Update on
$$(x_3, y_3)$$

 $\rightarrow \overrightarrow{w}^{(1)} = (1, 1)$
Update on (x_4, y_4)
 $\rightarrow \overrightarrow{w}^{(2)} = (2, 0)$

	x_1	x_2	y
$\vec{x}_1 = ($	1	2)	$y_1 = 1$
$\vec{x}_2 = ($	2	1)	$y_2 = 1$
$\vec{x}_3 = ($	-1	-1)	$y_3 = -1$
$\vec{x}_4 = ($	-1	1)	$y_3 = -1$

•
$$\vec{w}^{(0)} = (0,0)$$

$$y_1(\vec{w}^{(0)} \cdot \vec{x}_1) = 0$$
• $\vec{w}^{(1)} = \vec{w}^{(0)} + x_1 = (1,2)$

$$w^{(1)} = w^{(0)} + x_1 = (1,2)$$

$$\rightarrow y_1(\vec{w}^{(1)} \cdot \vec{x}_1) = 5 > 0$$

$$\rightarrow y_2(\vec{w}^{(1)} \cdot \vec{x}_2) = 4 > 0$$

$$\rightarrow y_3(\vec{w}^{(1)} \cdot \vec{x}_3) = 3 > 0$$

$$\rightarrow y_4(\vec{w}^{(1)} \cdot \vec{x}_4) = -1 \le 0$$

•
$$\vec{w}^{(2)} = \vec{w}^{(1)} - x_4 = (2,1)$$

Online Perceptron

Theorem: Mistake Bound of Online Perceptron

Given a sequence of data $(\vec{x}_1, y_1), (\vec{x}_2, y_2), \dots, (\vec{x}_m, y_m)$ one by one, with radius R and margin $\gamma \coloneqq \min_{i \in S} \frac{y_i(\vec{w}^* \cdot \vec{x}_i)}{\|\vec{w}^*\|}$ for some \vec{w}^* .

Online prediction: At each time use the current \vec{w} to predict the label of incoming (\vec{x}_i, y_i) , update if needed.

Mistake Bound: The number of mistake that perceptron makes is at most R^2/γ^2 .

Example: Reuters Text Classification

