Machine Learning for Intelligent Systems

Lecture 6: Linear Classifiers and Perceptron

Reading: UML 9.1

Instructors: Nika Haghtalab (this time) and Thorsten Joachims

Representational Power

Assume that x_1,x_2 take are binary values 0, 1. Represent the following using linear thresholds.

• $x_1 \wedge x_2$

• *x*₁ ∨ *x*₂

• $x_1 \oplus x_2$

→ \oplus represent XOR, where $x_1 \oplus x_2 = 1$ when exactly one of x_1 and x_2 is set to 1.

Homogenous vs. Non-homogenous

Any d-dimensional learning problem for ${\bf non-homogenous}$ linear classifiers has a homogenous form in (d+1) dimension.

Non-Homogenous $HS^{d} = \{h_{\vec{w},b} \ \vec{w} \in \mathbb{R}^{d}, b \in \mathbb{R}\}$	Homogenous $HS_{homogenous}^{d+1} = \{h_{\vec{w}'} \ \vec{w}' \in \mathbb{R}^{d+1}\}$
x	$\vec{x}' = (\vec{x}, +1)$
\vec{w}, b	$\vec{w}' = (\vec{w}, b)$
$\vec{w} \cdot \vec{x} + b$	$\vec{w}' \cdot \vec{x}' = \vec{w} \cdot \vec{x} + b$

Without loss of generality, focus on homogenous linear classifiers.

