Machine Learning for Intelligent Systems

Lecture 6: Linear Classifiers and Perceptron

Reading: UML 9.1

Instructors: Nika Haghtalab (this time) and Thorsten Joachims

Hypothesis Spaces

$($ color $=$ red $) \wedge($ size $=$ small $)$
AND of feature-values
$($ color $=$ red $) \vee($ size $=$ small $)$
OR of feature-values

Linear Classifiers

Encoding in Euclidean Space

Represent apples as vectors in \mathbb{R}^{d}.

- Old:

$$
X=\{A, B\} \times\{\text { red, green }\} \times\{\text { large }, \text { medium, small }\} \times\{\text { crunchy, soft }\} .
$$

- New:

$$
\rightarrow X \subseteq \mathbb{R}^{4}
$$

$$
x_{1} \text { farm: } \mathrm{A} \rightarrow 1, \mathrm{~B} \rightarrow-1
$$

$$
x_{2} \text { color: red } \rightarrow 1 \text {, green } \rightarrow-1
$$

$$
x_{3} \text { size: large } \rightarrow 1 \text {, medium } \rightarrow 0 \text {, small } \rightarrow-1
$$

x_{4} firmness: crunchy $\rightarrow 1$, soft $\rightarrow-1$.
$\rightarrow \mathrm{Y}=\{-1,+1\}$: Tasty $\rightarrow+1$, Not Tasty $\rightarrow-1$

Reuters Business News text classification:

- 9947 keywords (more accurately, word "stems")
- $\mathrm{X}=\{0,1\}^{9947}$, where $x_{i}=1$ if the keyword i appears in document.
- $\mathrm{Y}=\{-1,+1\}$.

Linear Classifiers

For a vector $\vec{w} \in \mathbb{R}^{d}$ and $b \in \mathbb{R}$, the hypothesis $h_{\vec{w}, b}: \mathbb{R}^{d} \rightarrow \mathbb{R}$ defined bellow is called a linear classifier/linear predictor/halfspace,

$$
h_{\vec{w}, b}(\vec{x})=\operatorname{sign}(\vec{w} \cdot \vec{x}+b)= \begin{cases}+1 & \vec{w} \cdot \vec{x}+b>0 \\ -1 & \vec{w} \cdot \vec{x}+b \leq 0\end{cases}
$$

Recall: Dot products

For two vectors: $\vec{w}=\left(w_{1}, w_{2}, w_{3}, \ldots, w_{n}\right)$ and $\vec{x}=\left(x_{1}, x_{2}, x_{3}, \ldots, x_{n}\right)$.

- $\vec{w} \cdot \vec{x}=w_{1} x_{1}+w_{2} x_{2}+w_{3} x_{3}+\cdots+w_{n} x_{n}$
- $\vec{w} \cdot \vec{x}$ is the (signed) length of the projection of \vec{x} on unit vector \vec{w}.

Linear Classifiers

For a vector $\vec{w} \in \mathbb{R}^{d}$ and $b \in \mathbb{R}$, the hypothesis $h_{\vec{w}, b}: \mathbb{R}^{d} \rightarrow \mathbb{R}$ defined bellow is called a linear classifier/linear predictor/halfspace

$$
h_{\vec{w}, b}(\vec{x})=\operatorname{sign}(\vec{w} \cdot \vec{x}+b)= \begin{cases}+1 & \vec{w} \cdot \vec{x}+b>0 \\ -1 & \vec{w} \cdot \vec{x}+b \leq 0\end{cases}
$$

Linear Classifiers in all dimensions

- One-dimension: $h_{w, b}(x)=\operatorname{sign}(w x+b)$
\rightarrow Decision boundary: point

- Two-dimension: $h_{\vec{w}, b}(x)=\operatorname{sign}(\vec{w} \cdot \vec{x}+b)$ \rightarrow Decision boundary: line
- d-dimension: $h_{\vec{w}, b}(x)=\operatorname{sign}(\vec{w} \cdot \vec{x}+b)$

\rightarrow Decision boundary: hyperplane $\vec{w} \cdot \vec{x}+b=0$

Representational Power

Assume that x_{1}, x_{2} take are binary values 0,1 . Represent the following using linear thresholds.

- $x_{1} \wedge x_{2}$
- $x_{1} \vee x_{2}$
- $x_{1} \oplus x_{2}$
$\rightarrow \oplus$ represent XOR, where $x_{1} \oplus x_{2}=1$ when exactly one of x_{1} and x_{2} is set to 1 .

Homogenous vs. Non-homogenous

Any d-dimensional learning problem for non-homogenous linear classifiers has a homogenous form in $(\mathrm{d}+1)$ dimension.
$\left.\begin{array}{|c|c|}\hline \begin{array}{c}\text { Non-Homogenous } \\ H S^{d}=\left\{h_{\vec{w}, b} \mid \vec{w} \in \mathbb{R}^{d}, b \in \mathbb{R}\right\}\end{array} & \begin{array}{c}\text { Homogenous } \\ \text { HS } \\ \text { homogenous }\end{array}=\left\{h_{\vec{w}} \mid\right. \\ \left.\mid \vec{w}^{\prime} \in \mathbb{R}^{d+1}\right\}\end{array}\right\}$

Without loss of generality, focus on homogenous linear classifiers.

Find a consistent classifier

If there is a homogeneous linear classifier that is consistent with $\left\{\left(\vec{x}_{1}, y_{1}\right),\left(\vec{x}_{2}, y_{2}\right), \ldots,\left(\vec{x}_{m}, y_{m}\right)\right\}$, how can we find it?

Unit vector \vec{w}^{*} is such that for all $\left(\vec{x}_{i}, y_{i}\right), y_{i}\left(\vec{w}^{*} \cdot \vec{x}_{i}\right) \geq \gamma>0$.

We want to find a \vec{w} such that $y_{i}\left(\vec{w} \cdot \vec{x}_{i}\right)>0$ for all $\left(\vec{x}_{i}, y_{i}\right)$.

Can be done with a linear program

Improving a linear classifier

Start with a guess and improve it.

Move away from negative misclassified points

Move towards positive misclassified points

Perceptron (homogeneous \& batch)

Input: Training data set $\left\{\left(\vec{x}_{1}, y_{1}\right),\left(\vec{x}_{2}, y_{2}\right), \ldots,\left(\vec{x}_{m}, y_{m}\right)\right\}$

Frank Rosenblatt (a) Cornell!

Initialize $\vec{w}^{(0)}=(0, \ldots, 0), t=0$
While there is $i \in[m]$, such that $y_{i}\left(\vec{w}^{(t)} \cdot \vec{x}_{i}\right) \leq 0$ then, misclassified

- $\vec{w}^{(t+1)}=\vec{w}^{(t)}+y_{i} \vec{x}_{i}\left\{\begin{array}{l}\vec{w}^{(t)}+\vec{x}_{i} \text { for positive instances } \\ \vec{w}^{(t)}-\vec{x}_{i} \text { for negative instances }\end{array}\right.$
- $t \leftarrow t+1$

End While

Output $\vec{w}^{(t)}$

Example: Reuters Text Classification

