Machine Learning for Intelligent Systems

Lecture 4: Prediction and Overfitting

Reading: UML 2.1-2.2, 18.2

Instructors: Nika Haghtalab (this time) and Thorsten Joachims

Inductive Learning

Instance Space:
Instance space X including feature representation.
Target Attributes (Labels):
A set Y of labels.
Hidden target function:
An unknown function $\mathrm{f}: \mathrm{X} \rightarrow \mathrm{Y}$ that is how instance are labeled in life.
Training Data: This Lecture
A set S of labeled pairs $(x, f(x)) \in X \times Y$ that we have seen before.
Hypothesis space:
A predetermined set H of functions in which we look for $\mathrm{h}: \mathrm{X} \rightarrow \mathrm{Y}$.
Inductive Learning
Given a large enough number of training examples, and given a hypothesis space H ,
learn a hypothesis $h \in H$ that approximates $f(\cdot)$
How does performance of h on S translates to unseen instances.

Learning as Prediction

Chain rule: Sampling as a two step procedure

$$
\mathrm{P}(\mathrm{X}, \mathrm{Y}) \quad=\mathrm{P}(\mathrm{X}) \quad \times \quad \mathrm{P}(\mathrm{Y} \mid \mathrm{X})
$$

$\mathrm{P}(\mathrm{X})$: Prob. the world produces instance with representation X
Example 1: X is homework representation
$x_{1}=\left(\right.$ complete, Yes, Yes, Clear, No), $x_{2}=$ (guessing, Yes, Yes, Clear, Yes)
With prob. $\mathrm{P}\left(\mathrm{X}=x_{1}\right)=0.2$ and $\mathrm{P}\left(\mathrm{X}=x_{2}\right)=0.0001$.
Example 2: X is an apple representation
$x_{1}=$ (A, red, medium, crunchy), $x_{2}=$ (B, green, small, soft)
With prob. $\mathrm{P}\left(\mathrm{X}=x_{1}\right)=0.25$ and $\mathrm{P}\left(\mathrm{X}=x_{2}\right)=0.01$.
$\mathrm{P}(\mathrm{Y} \mid \mathrm{X})$: Prob. of seeing label Y on instance X .
Example 1: Prob. the teacher assign A+ to homework X. Deterministic label
$\mathrm{P}\left(\mathrm{Y}=\right.$ yes $\left.\mid x_{1}\right)=1$ and $\mathrm{P}\left(\mathrm{Y}=y e s \mid x_{2}\right)=0$.
Example 2: Prob. an apple with features X is tasty
$\mathrm{P}\left(\mathrm{Y}=\right.$ yes $\left.\mid x_{1}\right)=0.9$ and $\mathrm{P}\left(\mathrm{Y}=\right.$ yes $\left.\mid x_{2}\right)=0.1$.

Inductive Learning

Instance Space:

Instance space X including feature representation.
Target Attributes (Labels)
A set Y of labels.
Hidden target function:
An unknown function $\mathrm{f}: \mathrm{X} \rightarrow \mathrm{Y}$ that is how instance are labeled in life
Training Data:
A set of labeled pairs $(\mathrm{x}, \mathrm{f}(\mathrm{x})) \in \mathrm{X} \times \mathrm{Y}$ that we have seen before.
Hypothesis space: \quad Last Lecture
A predetermined set H of functions in which we look for $\mathrm{h}: \mathrm{X} \rightarrow \mathrm{Y}$.
Inductive Learning
Given a large enough number of training examples, and given a hypothesis space H ,
learn a hypothesis $h \in H$ that approximates $f(\cdot)$

World as a Distribution

A particular instance of a learning problem can be described as a joint probability distribution $\mathrm{P}(\mathrm{X}, \mathrm{Y})$ over $\mathrm{X} \times \mathrm{Y}$.

For example:

- A^{+}Homework: $\mathrm{P}(\mathrm{X}, \mathrm{Y})$ indicates the probability that a homework with features X will receive A^{+}label Y
- Tasty Apple: $\mathrm{P}(\mathrm{X}, \mathrm{Y})$ indicates the probability that an apple with features X has tastiness label Y

How is the data generated?

Independently: Seeing a labeled instance doesn't affect prob. of others. $\rightarrow \mathrm{Y}_{i}$ depends on X_{i}, but NOT on X_{j} and Y_{j}, for $i \neq j$.
\rightarrow What does it mean for homeworks? Cheating?
\rightarrow For apples? A disease affecting many apple trees?
Identically: $\mathrm{P}(\mathrm{X})$ and $\mathrm{P}(\mathrm{Y} \mid \mathrm{X})$ don't change over time.
$\rightarrow \mathrm{P}\left(\mathrm{X}_{i}=x, \mathrm{Y}_{i}=y\right)=P\left(\mathrm{X}_{\mathrm{j}}=x, \mathrm{Y}_{j}=y\right)$ for all i and j.
\rightarrow Quality of students changes over time? The selection criterion? \rightarrow What about for apples?

Independently Identically Distributed (i.i.d)
A sample $S=\left\{\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right), \ldots,\left(x_{m}, y_{m}\right)\right\}$ is independently identically distributed according to $\mathrm{P}(\mathrm{X}, \mathrm{Y})$ if
$\operatorname{Pr}\left(\mathrm{S}=\left\{\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right), \ldots,\left(x_{m}, y_{m}\right)\right\}\right)=\prod_{i=1}^{m} \mathrm{P}\left(\mathrm{X}=x_{i}, \mathrm{Y}=y_{i}\right)$

Sample \& Generalization Errors

$\Delta(a, b)$ is the $0 / 1$-loss function. i.e.,

$$
\Delta(a, b)= \begin{cases}0 & \text { if }(a=b) \\ 1 & \text { otherwise }\end{cases}
$$

Sample (Empirical) Error
Sample error of hypothesis h on samples $S=\left\{\left(x_{1}, y_{1}\right), \ldots\right.$, $\left.\left(x_{m}, y_{m}\right)\right\}$, denoted by $\operatorname{err}_{S}(h)$ is

$$
\operatorname{err}_{S}(h)=\frac{1}{m} \sum_{i=1}^{m} \Delta\left(h\left(x_{i}\right), y_{i}\right)
$$

Generalization (Prediction/true) Error

Generalization error of hypothesis h on distribution $P(X, Y)$, denoted by $\operatorname{err}_{P}(h)$ is
$\operatorname{err}_{P}(h)=\mathbb{E}_{(x, y) \sim P}[\Delta(h(x), y)]$

Decision Tree for "Corporate Acq."

- Task: Learn rule that classifies Reuters Business News
- Class +: "Corporate Acquisitions"
- Class -: Other articles
- 2000 training instances
- Representation:
- Boolean attributes, indicating presence of a keyword in article
- 9947 such keywords (more accurately, word "stems")

LAROCHE STARTS BID FOR NECO SHARES \& SALANT CORP 1ST QTR | Investor David F. La Roche of North Kingstown, R.I., | FEB 28 NET |
| :--- | :--- | :--- | said he is offering to purchase 170,000 common shares \quad Oper shr profit seven cts vs loss 12 cts. of NECO Enterprises Inc at 26 dirs each. He said the successful completion of the offer, plus shares he already owns, would give him 50.5 pct of NECO's 962,016 common shares. La Roche said he may buy more, and possible all NECO shares. He said the offer and withdrawal rights will expire at $1630 \mathrm{EST} / 2130 \mathrm{gmt}$, March 30, 1987 Oper net profit 216,000 vs loss 401,000 . Sales 21.4 mln vs 24.9 mln .

NOTE: Current year net excludes
$142,000 \mathrm{dlr}$ tax credit. Company operating in Chapter 11 bankruptcy.

Overfitting

Overfitting

Hypothesis h overfits to the training data S if $\operatorname{err}_{P}(h) \gg \operatorname{err}_{S}(h)$

The issue with overfitting it that there could have been another hypothesis h^{\prime}, such $\operatorname{err}_{S}(h) \lesssim \operatorname{err}_{S}\left(h^{\prime}\right)$ but $\operatorname{err}_{P}(h) \gg \operatorname{err}_{P}\left(h^{\prime}\right)$.

Question: Does h_{S} overfit on samples $S=\left\{\left(x_{1}, f\left(x_{1}\right)\right), \ldots\right\}$?

$$
h(x)=\left\{\begin{array}{cc}
y & \text { if }(x, y) \in S \\
\text { flip a coin } & \text { if haven't seen } x
\end{array}\right.
$$

Question: When does overfitting happen?

Overfitting in Decision Trees

Overfitting in Decision Trees

Inductive Bias in ID3

ID-3: The top-down Induction on DTs using entropy. Make a leaf node \rightarrow if all samples have the same label.
\rightarrow if there is no unused feature. Go with the majority label.

Recall: Decision trees are very expressive.
\rightarrow How large is the set of DTs on instance space X.
\rightarrow Is there no bias?

Inductive bias in ID3 is a preference for some hypotheses (fewer nodes), not a restriction to a hypothesis space.

Need for Inductive Bias

Recall: h_{S} that memorizes S fully (and flips a coin for any x that doesn't appear in the samples overfits.)

Avoid overfitting:

- Should we use a hypothesis space that includes all possible functions., i.e., $H=2^{X}$?
\rightarrow Restrict hypothesis space, e.g., ANDs, ORs, Decision Lists, ...
- Other assumptions?

ML Tools for dealing with overfitting

Statistical Learning Theory:

- For which hypothesis sets is learning (without overfitting) possible?
- How large a training set do I need to avoid overfitting?
- We will learn this later in the course!

Occam's Razor:

- The law of briefness!
- All things equal, simpler explanations are better.

Example: Two trees fell down during a windy night.

- The wind knocked them down?
- Two meteorites each took one tree down and, after striking the trees, hit each other removing any trace of themselves?

