Instance-Based Learning

CS4780/5780 – Machine Learning Fall 2019

Nika Haghtalab & Thorsten Joachims Cornell University

Reading: UML 19.1, 19.3 Optional Reading: Linden et al., Amazon Recommendations (http://www.cs.umd.edu/~samir/498/Amazon-Recommendations.pdf)

Supervised Learning

 Supervised Learning for Binary Classification: Acquire an operational classification rule given positive and negative training examples.

Also called: concept learning,...

Binary Classification Example

	CORRECT (complete, partial, guessing)	color (yes, no)	original (yes, no)	presentation (clear, unclear)	latex (yes, no)	A+
1	complete	yes	yes	clear	no	yes
2	complete	no	yes	clear	no	yes
3	partial	yes	no	unclear	no	no
4	complete	yes	yes	clear	yes	yes

Instance Space *X***:** Set of all possible instances *x* describable by attributes (often called features).

Target Attribute *Y*: Label $y \in \{+1, -1\}$ (or yes/no, or 0/1) for each instance.

Target Function f: Function that assigns true label for each x (f is unknown).

Example (x, y): Instance x with label y = f(x).

Training Data S: Collection of examples observed by learning algorithm.

Learning a Binary Function

?

• Task:

- Learn (to imitate) a function $f: X \{+1, -1\}$

- Training Examples:
 - Learning algorithm is given the correct value of the function for particular inputs → training examples
 - An example is a pair (x, y), where x is the input and y = f(x) is the output of the target function applied to x.
- Goal:
 - Find a function

h:
$$X ? \{+1, -1\}$$

?

that approximates

$$f: X \{+1, -1\}$$

as well as possible.

K-Nearest Neighbor (KNN)

- Given: Training data $((\vec{x}_1, y_1), \dots, (\vec{x}_n, y_n))$
 - Attribute vectors: $\vec{x}_i \in X$
 - Labels: $y_i \in Y$
- Parameter:
 - Similarity function: $K : X \times X \rightarrow \Re$
 - Number of nearest neighbors to consider: k
- Prediction rule
 - New example x'
 - K-nearest neighbors: k train examples with largest $K(\vec{x}_i, \vec{x}')$

$$h(\vec{x}') = \arg \max_{y \in Y} \left\{ \sum_{i \in knn(\vec{x}')} \mathbf{1}_{[y_i = y]} \right\}$$

KNN Example

	CORRECT (complete, partial, guessing)	color (yes, no)	original (yes, no)	presentation (clear, unclear)	latex (yes, no)	A+
1	complete	yes	yes	clear	no	yes
2	complete	no	yes	clear	no	yes
3	partial	yes	no	unclear	no	no
4	complete	yes	yes	clear	yes	yes

- How will new examples be classified?
 - Similarity function?
 - Value of k?

$$h(\vec{x}') = \arg \max_{y \in Y} \left\{ \sum_{i \in knn(\vec{x}')} \mathbf{1}_{[y_i = y]} \right\}$$

Weighted K-Nearest Neighbor

- Given: Training datadata $((\vec{x}_1, y_1), ..., (\vec{x}_n, y_n))$
 - Attribute vectors: $\vec{x}_i \in X$
 - Target attribute: $y_i \in Y$
- Parameter:
 - Similarity function: $K : X \times X \rightarrow \Re$
 - Number of nearest neighbors to consider: k
- Prediction rule
 - New example x'
 - K-nearest neighbors: k train examples with largest $K(\vec{x}_i, \vec{x}')$

$$h(\vec{x}') = \arg\max_{y \in Y} \left\{ \sum_{i \in knn(\vec{x}')} \mathbf{1}_{[y_i = y]} K(\vec{x}_i, \vec{x}') \right\}$$

Types of Attributes

- Symbolic (nominal)
 - EyeColor {brown, blue, green}
- Boolean
 - Alive {TRUE,FALSE}
- Numeric
 - Integer: *age* [0, 105]
 - Real: height
- Structured
 - Natural language sentence: parse tree
 - Protein: sequence of amino acids

Example: Expensive Housing (>\$200 / sqft)

Example: Effect of k

Hastie, Tibshirani, Friedman 2001

Supervised Learning

?

- Task:
 - Learn (to imitate) a function f: X Y
- Training Examples:
 - Learning algorithm is given the correct value of the function for particular inputs → training examples
 - An example is a pair (x, f(x)), where x is the input and f(x) is the output of the function applied to x.

?

- Goal:
 - Find a function

h:
$$X ? Y$$

that approximates

as well as possible.

Weighted K-NN for Regression

- Given: Training data $((\vec{x}_1, y_1), \dots, (\vec{x}_n, y_n))$
 - Attribute vectors: $\vec{x}_i \in X$
 - Target attribute: $y_i \in \Re$
- Parameter:
 - Similarity function: $K : X \times X \rightarrow \Re$
 - Number of nearest neighbors to consider: k
- Prediction rule
 - New example x'
 - K-nearest neighbors: k train examples with largest $K(\vec{x}_i, \vec{x}')$

$$h(\vec{x}') = \frac{\sum_{i \in knn(\vec{x}')} y_i K(\vec{x}_i, \vec{x}')}{\sum_{i \in knn(\vec{x}')} K(\vec{x}_i, \vec{x}')}$$

Collaborative Filtering

Image: Control of the state of the sta

Rating Matrix	m ₁	m ₂	m ₃	m ₄	m ₅	m ₆
u ₁		1	5		3	5
u ₂		5	1	1	3	1
u ₃		2	4		1	5
u	?	1	4	?	?	?

Recently Watched

Top 10 for Thorsten

MASTERPIEC

THE LAST ENEMY

