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Outline 

• Supervised vs. Unsupervised Learning 

• Hierarchical Clustering 

– Hierarchical Agglomerative Clustering (HAC) 

• Non-Hierarchical Clustering 

– K-means 

– Mixtures of Gaussians and EM-Algorithm 



Non-Hierarchical Clustering 

• K-means clustering (“hard”) 

• Mixtures of Gaussians and training via 
Expectation maximization Algorithm (“soft”) 



Clustering Criterion 

• Evaluation function that assigns a (usually 
real-valued) value to a clustering 
– Clustering criterion typically function of  

• within-cluster similarity and  

• between-cluster dissimilarity 

• Optimization 
– Find clustering that maximizes the criterion 

• Global optimization (often intractable) 

• Greedy search 

• Approximation algorithms 



Centroid-Based Clustering 

• Assumes instances are real-valued vectors. 

• Clusters represented via centroids (i.e. average of 
points in a cluster) c: 

 

 

 

 

• Reassignment of instances to clusters is based on 
distance to the current cluster centroids. 
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K-Means Algorithm 

• Input: k = number of clusters, distance measure d  

• Select k random instances {s1, s2,… sk} as seeds. 

• Until clustering converges or other stopping criterion: 

• For each instance xi: 

• Assign xi to the cluster cj such that d(xi, sj) is min. 

• For each cluster cj  //update the centroid of each cluster 

• sj = (cj)  



K-means Example 
(k=2) 

Pick seeds 

Reassign clusters 

Compute centroids 
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Converged! 



Time Complexity 
• Assume computing distance between two 

instances is O(N) where N is the dimensionality 
of the vectors. 

• Reassigning clusters for n points: O(kn) distance 
computations, or O(knN). 

• Computing centroids: Each instance gets added 
once to some centroid: O(nN). 

• Assume these two steps are each done once for i 
iterations:  O(iknN). 

• Linear in all relevant factors, assuming a fixed 
number of iterations, more efficient than HAC. 



Buckshot Algorithm 

Problem 
• Results can vary based on random seed selection, 

especially for high-dimensional data. 
• Some seeds can result in poor convergence rate, or 

convergence to sub-optimal clusterings. 
Idea: Combine HAC and K-means clustering. 
• First randomly take a sample of instances of size n1/2  
• Run group-average HAC on this sample  
• Use the results of HAC as initial seeds for K-means. 
• Overall algorithm is efficient and avoids problems of 

bad seed selection. 



Clustering as Prediction 

• Setup 

– Learning Task: 𝑃(𝑋) 

– Training Sample: 𝑆 = (𝑥 1, … , 𝑥 𝑛) 

– Hypothesis Space: 𝐻 = ℎ1, … , ℎ 𝐻  each 

describes 𝑃(𝑋|ℎ𝑖) where ℎ𝑖 are parameters 

– Goal: learn which 𝑃(𝑋|ℎ𝑖) produces the data 

• What to predict? 

– Predict where new points are going to fall 



Gaussian Mixtures and EM 

• Gaussian Mixture Models 
– Assume  
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and ℎ = (𝜇 1, … , 𝜇 𝑘 , Σ1, … , Σ𝑘). 

• EM Algorithm 
– Assume 𝑃(𝑌) and 𝑘 known and Σ𝑖 = 1. 
– REPEAT 
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