Statistical Learning Theory: Expert Learning

CS4780/5780 – Machine Learning Fall 2014

> Thorsten Joachims Cornell University

Reading: Mitchell Chapter 7.5

Generalization Error Bound: Infinite H, Non-Zero Error

- Setting
 - Sample of n labeled instances S
 - Learning Algorithm L using a hypothesis space H with VCDim(H)=d
 - L returns hypothesis $\hat{h}=L(S)$ with lowest training error
- Definition: The VC-Dimension of H is equal to the maximum number d of examples that can be split into two sets in all 2^d ways using functions from H (shattering)
- Given hypothesis space H with VCDim(H) equal to d and an i.i.d. sample S
 of size n, with probability (1-δ) it holds that

$$Err_P(h_{\mathcal{L}(S)}) \leq Err_S(h_{\mathcal{L}(S)}) + \sqrt{\frac{d\left(\ln\left(\frac{2n}{d}\right) + 1\right) - \ln\left(\frac{\delta}{4}\right)}{n}}$$

Outline

- · Online learning
- · Review of perceptron and mistake bound
- Expert model
 - Halving Algorithm
 - Weighted Majority Algorithm
 - Exponentiated Gradient Algorithm
- · Bandit model
 - EXP3 Algorithm

Online Classification Model

- Setting
 - Classification
 - Hypothesis space H with h: X→Y
 - Measure misclassifications (i.e. zero/one loss)
- Interaction Model
 - Initialize hypothesis $h \in \mathcal{H}$
 - FOR t from 1 to T
 - Receive $x_{\rm t}$
 - Make prediction $\hat{y_t} = h(x_t)$
 - Receive true label y_{t}
 - Record if prediction was correct (e.g., $\hat{y_t} = y_t$)
 - Update i

(Online) Perceptron Algorithm

• Input: $S = ((\vec{x}_1, y_1), ..., (\vec{x}_n, y_n)), \ \vec{x}_i \in \Re^N, \ y_i \in \{-1, 1\}$ • Algorithm: $- \ \vec{w}_0 = \vec{0}, \ k = 0$ $- \ \text{FOR} \ i = 1 \ \text{TO} \ n$ $* \ \text{IF} \ y_i (\vec{w}_k \cdot \vec{x}_i) \leq 0 \ \#\#\# \ \text{makes mistake}$ $\cdot \ \vec{w}_{k+1} = \vec{w}_k + y_i \vec{x}_i$ $\cdot \ k = k+1$ $* \ \text{ENDIF}$ $- \ \text{ENDFOR}$ • Output: \vec{w}_i

Perceptron Mistake Bound

Theorem: For any sequence of training examples $S=((\vec{x}_1,y_1),\dots,(\vec{x}_n,y_n)$ with

$$R = \max ||\vec{x}_i||,$$

if there exists a weight vector \overrightarrow{w}_{opt} with $\left\|\overrightarrow{w}_{opt}\right\|=1$ and

$$y_i \left(\overrightarrow{w}_{opt} \cdot \overrightarrow{x}_i \right) \ge \delta$$

for all $1 \leq i \leq n$, then the Perceptron makes at most

$$\frac{R^2}{\delta^2}$$

errors.

Expert Learning Model

- Setting
 - -N experts named $H = \{h_1, ..., h_N\}$
 - Each expert \mathbf{h}_i takes an action $y=h_i(x_t)$ in each round t and incurs loss $\Delta_{t,i}$
 - Algorithm can select which expert's action to follow in each round
- Interaction Model
 - FOR t from 1 to T
 - Algorithm selects expert $\boldsymbol{h_{i}}_{t}$ according to strategy $\boldsymbol{A_{w_{t}}}$ and follows its action y

 - Experts incur losses $\Delta_{t,1}$... $\Delta_{t,N}$ Algorithm incurs loss Δ_{t,i_t} Algorithm updates w_t to w_{t+1} based on $\Delta_{t,1}$... $\Delta_{t,N}$

Halving Algorithm

- Setting
 - -N experts named $H = \{h_1, ..., h_N\}$
 - Binary actions $y = \{+1, -1\}$ given input x, zero/one loss
 - Perfect expert exists in *H*
- Algorithm
 - $-VS_1 = H$
 - FOR t = 1 TO T

 - Predict the same y as majority of $h_i \in VS_t$ $VS_{t+1} = VS_t$ minus those $h_i \in VS_t$ that were wrong
- Mistake Bound
 - How many mistakes can the Halving algorithm make before predicting perfectly?