Statistical Learning Theory: Expert Learning

CS4780/5780 – Machine Learning Fall 2014

Thorsten Joachims Cornell University

Reading: Mitchell Chapter 7.5

Generalization Error Bound: Infinite H, Non-Zero Error

- Setting
 - Sample of n labeled instances S
 - Learning Algorithm L using a hypothesis space H with VCDim(H)=d
 - L returns hypothesis $\hat{h}=L(S)$ with lowest training error
- Definition: The VC-Dimension of H is equal to the maximum number d of examples that can be split into two sets in all 2^d ways using functions from H (shattering).
- Given hypothesis space H with VCDim(H) equal to d and an i.i.d. sample S of size n, with probability $(1-\delta)$ it holds that

$$Err_P(h_{\mathcal{L}(S)}) \le Err_S(h_{\mathcal{L}(S)}) + \sqrt{\frac{d\left(\ln\left(\frac{2n}{d}\right) + 1\right) - \ln\left(\frac{\delta}{4}\right)}{n}}$$

Outline

- Online learning
- Review of perceptron and mistake bound
- Expert model
 - Halving Algorithm
 - Weighted Majority Algorithm
 - Exponentiated Gradient Algorithm
- Bandit model
 - EXP3 Algorithm

Online Classification Model

Setting

- Classification
- Hypothesis space H with h: X→Y
- Measure misclassifications (i.e. zero/one loss)

Interaction Model

- Initialize hypothesis $h \in H$
- FOR t from 1 to T
 - Receive x_t
 - Make prediction $\hat{y_t} = h(x_t)$
 - Receive true label y_t
 - Record if prediction was correct (e.g., $\hat{y_t} = y_t$)
 - Update h

(Online) Perceptron Algorithm

- Input: $S = ((\vec{x}_1, y_1), ..., (\vec{x}_n, y_n))$, $\vec{x}_i \in \Re^N$, $y_i \in \{-1, 1\}$
- Algorithm:
 - $-\vec{w}_0 = \vec{0}, k = 0$
 - FOR i=1 TO n
 - * IF $y_i(\vec{w}_k \cdot \vec{x}_i) \leq 0$ ### makes mistake
 - $\vec{v}_{k+1} = \vec{w}_k + y_i \vec{x}_i$
 - k = k + 1
 - * ENDIF
 - ENDFOR
- Output: \vec{w}_k

Perceptron Mistake Bound

Theorem: For any sequence of training examples $S = ((\vec{x}_1, y_1), ..., (\vec{x}_n, y_n))$ with

$$R = \max ||\vec{x}_i||,$$

if there exists a weight vector \overrightarrow{w}_{opt} with $\left\|\overrightarrow{w}_{opt}\right\|=1$ and

$$y_i\left(\overrightarrow{w}_{opt}\cdot\overrightarrow{x}_i\right) \geq \delta$$

for all $1 \le i \le n$, then the Perceptron makes at most

$$\frac{R^2}{\delta^2}$$

errors.

Expert Learning Model

Setting

- -N experts named $H = \{h_1, ..., h_N\}$
- Each expert h_i takes an action $y = h_i(x_t)$ in each round t and incurs loss $\Delta_{t,i}$
- Algorithm can select which expert's action to follow in each round

Interaction Model

- FOR t from 1 to T
 - Algorithm selects expert $h_{i\,t}$ according to strategy A_{w_t} and follows its action y
 - Experts incur losses $\Delta_{t,1}$... Δ_{t,N_t}
 - Algorithm incurs loss Δ_{t,i_r}
 - Algorithm updates w_t to w_{t+1} based on $\Delta_{t,1}$... $\Delta_{t,N}$

Halving Algorithm

Setting

- -N experts named $H = \{h_1, ..., h_N\}$
- Binary actions $y = \{+1, -1\}$ given input x, zero/one loss
- Perfect expert exists in H

Algorithm

- $-VS_1 = H$
- FOR t = 1 TO T
 - Predict the same y as majority of $h_i \in VS_t$
 - $VS_{t+1} = VS_t$ minus those $h_i \in VS_t$ that were wrong

Mistake Bound

 How many mistakes can the Halving algorithm make before predicting perfectly?