Statistical Learning Theory: PAC Learning

CS4780/5780 – Machine Learning Fall 2014

> Thorsten Joachims Cornell University

Reading: Mitchell Chapter 7 (not 7.4.4 and 7.5)

Outline

Questions in Statistical Learning Theory:

- How good is the learned rule after n examples?
- How many examples do I need before the learned rule is accurate?
- What can be learned and what cannot?
- Is there a universally best learning algorithm?

In particular, we will address:

What is the true error of h if we only know the training error of h?

- Finite hypothesis spaces and zero training error
- Finite hypothesis spaces and non-zero training error
- Infinite hypothesis spaces and VC dimension

Can you Convince me of your Psychic Abilities?

- Game
 - I think of n bits
 - If somebody in the class guesses my bit sequence, that person clearly has telepathic abilities – right?
- · Question:
 - If at least one of |H| players guesses the bit sequence correctly, is there any significant evidence that he/she has telepathic abilities?
 - How large would n and |H| have to be?

Discriminative Learning and Prediction Reminder

- Goal: Find h with small prediction error $Err_p(h)$ over P(X,Y).
- Discriminative Learning: Given H, find h with small error $Err_{Strain}(h)$ on training sample S_{train}
- Training Error: Error Err_{Strain}(h) on training sample.
- Test Error: Error Err_{Stoct}(h) on test sample is an estimate of Err_P(h)

Review of Definitions

Definition: A particular instance of a learning problem is described by a probability distribution P(X,Y).

Definition: A sample $S = ((\vec{x}_1, y_1), ..., (\vec{x}_n, y_n))$ is independently identically distributed (i.i.d.) according to P(X, Y).

Definition: The error on sample $S \ Err_S(h)$ of a hypothesis h is $Err_S(h) = \frac{1}{n} \sum_{i=1}^{n} \Delta(h(\vec{x_i}), y_i)$.

Definition: The prediction/generalization/true error $Err_P(h)$ of a hypothesis h for a learning task P(X,Y) is

$$Err_P(h) = \sum_{\vec{x} \in X, y \in Y} \Delta(h(\vec{x}), y) P(X = \vec{x}, Y = y)$$

Definition: The hypothesis space H is the set of all possible classification rules available to the learner.

Useful Formulas

 Binomial Distribution: The probability of observing x heads in a sample of n independent coin tosses, where in each toss the probability of heads is p, is

$$P(X = x | p, n) = \frac{n!}{r! (n-r)!} p^{x} (1-p)^{n-x}$$

· Union Bound:

$$P(X_1 = x_1 \lor X_2 = x_2 \lor \dots \lor X_n = x_n) \le \sum_{i=1}^n P(X_i = x_i)$$

• Unnamed:

$$(1-\epsilon) \leq e^{-\epsilon}$$

