
Clustering:
Similarity-Based Clustering

CS4780/5780 – Machine Learning
Fall 2013

Thorsten Joachims
Cornell University

Reading: Manning/Raghavan/Schuetze,

Chapters 16 (not 16.3) and 17
(http://nlp.stanford.edu/IR-book/)

http://nlp.stanford.edu/IR-book/
http://nlp.stanford.edu/IR-book/
http://nlp.stanford.edu/IR-book/
http://nlp.stanford.edu/IR-book/

Outline

• Supervised vs. Unsupervised Learning

• Hierarchical Clustering

– Hierarchical Agglomerative Clustering (HAC)

• Non-Hierarchical Clustering

– K-means

– Mixtures of Gaussians and EM-Algorithm

Supervised Learning
vs. Unsupervised Learning

• Supervised Learning
– Classification: partition examples into groups

according to pre-defined categories
– Regression: assign value to feature vectors
– Requires labeled data for training

• Unsupervised Learning
– Clustering: partition examples into groups when no

pre-defined categories/classes are available
– Novelty detection: find changes in data
– Outlier detection: find unusual events (e.g. hackers)
– Only instances required, but no labels

Clustering

• Partition unlabeled examples into disjoint subsets of
clusters, such that:

– Examples within a cluster are similar

– Examples in different clusters are different

• Discover new categories in an unsupervised manner
(no sample category labels provided).

Applications of Clustering

• Cluster retrieved documents
– to present more organized and understandable results to

user “diversified retrieval”

• Detecting near duplicates
– Entity resolution

• E.g. “Thorsten Joachims” == “Thorsten B Joachims”

– Cheating detection

• Exploratory data analysis
• Automated (or semi-automated) creation of

taxonomies
– e.g. Yahoo, DMOZ

• Compression

Applications of Clustering

Clustering Example

Clustering Example

Clustering Example

Clustering Example

Clustering Example

Similarity (Distance) Measures
• Euclidian distance (L2 norm):

• L1 norm:

• Cosine similarity:

• Kernels

𝐿2 𝑥 , 𝑥
′ = 𝑥𝑖 − 𝑥𝑖

′ 2
𝑁

𝑖=1

𝐿1 𝑥 , 𝑥
′ = 𝑥𝑖 − 𝑥𝑖

′
𝑁

𝑖=1

cos 𝑥 , 𝑥 ′ =
𝑥 ∗ 𝑥 ′

𝑥 𝑥 ′

Hierarchical Clustering

• Build a tree-based hierarchical taxonomy from a
set of unlabeled examples.

• Recursive application of a standard clustering
algorithm can produce a hierarchical clustering.

animal

vertebrate

fish reptile amphib. mammal worm insect crustacean

invertebrate

Agglomerative vs. Divisive
Clustering

• Agglomerative (bottom-up) methods start with each
example in its own cluster and iteratively combine
them to form larger and larger clusters.

• Divisive (top-down) separate all examples
immediately into clusters.

animal

vertebrate

fish reptile amphib. mammal worm insect crustacean

invertebrate

Hierarchical Agglomerative
Clustering (HAC)

• Assumes a similarity function for determining the
similarity of two clusters.

• Starts with all instances in a separate cluster and then
repeatedly joins the two clusters that are most similar
until there is only one cluster.

• The history of merging forms a binary tree or hierarchy.
• Basic algorithm:

• Start with all instances in their own cluster.
• Until there is only one cluster:

• Among the current clusters, determine the two
 clusters, ci and cj, that are most similar.
• Replace ci and cj with a single cluster ci cj

Cluster Similarity

• How to compute similarity of two clusters each
possibly containing multiple instances?

– Single link: Similarity of two most similar members.

– Complete link: Similarity of two least similar
members.

– Group average: Average similarity between
members.

Single-Link HAC

1 2

3 4

5 6

7 8

• When computing cluster similarity, use maximum
similarity of pairs:

),(max),(

,
yxsimccsim

ji cycx
ji

→ Can result in “straggly”
(long and thin) clusters
due to chaining effect.

Complete-Link HAC

1 2

3 4

5 6

7 8

• When computing cluster similarity, use minimum
similarity of pairs:

),(min),(

,
yxsimccsim

ji cycx
ji

→ Makes more “tight,”
spherical clusters.

Computational Complexity of HAC

• In the first iteration, all HAC methods need to
compute similarity of all pairs of n individual
instances which is O(n2).

• In each of the subsequent O(n) merging
iterations, must find smallest distance pair of
clusters Maintain heap O(n2 log n)

• In each of the subsequent O(n) merging
iterations, it must compute the distance between
the most recently created cluster and all other
existing clusters. Can this be done in constant
time such that O(n2 log n) overall?

Computing Cluster Similarity

• After merging ci and cj, the similarity of the
resulting cluster to any other cluster, ck, can be
computed by:

– Single Link:

– Complete Link:

)),(),,(max()),((kjkikji ccsimccsimcccsim

)),(),,(min()),((kjkikji ccsimccsimcccsim

c2 c1 x5

c2

c1 1 0.5

x5 0.5 1

x1 x2 c1 x5

x1 1 0.8 0.3

x2 0.8 1 0.2

c1 0.5

x5 0.3 0.2 0.5 1

Single-Link Example
x1 x2 x3 x4 x5

x1 1 0.8 0.2 0.7 0.3

x2 0.8 1 0.1 0.5 0.2

x3 0.2 0.1 1 0.9 0.5

x4 0.7 0.5 0.9 1 0.4

x5 0.3 0.2 0.5 0.4 1

x1 x2 c1 x5

x1 1 0.8 0.7 0.3

x2 0.8 1 0.5 0.2

c1 0.7 0.5 1 0.5

x5 0.3 0.2 0.5 1

Merge x3,x4
replace with max

c2 c1 x5

c2 1 0.7 0.3

c1 0.7 1 0.5

x5 0.3 0.5 1

Merge x1,x2
replace with max

c3 x5

c3 1 0.5

x5 0.5 1

Merge c1,c2
replace with max

Group Average
Agglomerative Clustering

• Use average similarity across all pairs within
the merged cluster to measure the similarity
of two clusters.

• Compromise between single and complete
link.

)(:)(

),(
)1(

1
),(

ji jiccx xyccyjiji

ji yxsim
cccc

ccsim

Computing
Group Average Similarity

• Assume cosine similarity and normalized
vectors with unit length.

• Always maintain sum of vectors in each
cluster.

• Compute similarity of clusters in constant
time:

jcx

j xcs

)(

)1||||)(|||(|

|)||(|))()(())()((
),(

iiii

iijiji

ji
cccc

cccscscscs
ccsim

Non-Hierarchical Clustering

• K-means clustering (“hard”)

• Mixtures of Gaussians and training via
Expectation maximization Algorithm (“soft”)

Clustering Criterion

• Evaluation function that assigns a (usually
real-valued) value to a clustering
– Clustering criterion typically function of

• within-cluster similarity and

• between-cluster dissimilarity

• Optimization
– Find clustering that maximizes the criterion

• Global optimization (often intractable)

• Greedy search

• Approximation algorithms

Centroid-Based Clustering

• Assumes instances are real-valued vectors.

• Clusters represented via centroids (i.e. average of
points in a cluster) c:

• Reassignment of instances to clusters is based on
distance to the current cluster centroids.

cx

x
c

||

1
(c)μ

K-Means Algorithm

• Input: k = number of clusters, distance measure d

• Select k random instances {s1, s2,… sk} as seeds.

• Until clustering converges or other stopping criterion:

• For each instance xi:

• Assign xi to the cluster cj such that d(xi, sj) is min.

• For each cluster cj //update the centroid of each cluster

• sj = (cj)

K-means Example
(k=2)

Pick seeds

Reassign clusters

Compute centroids

x

x

Reassign clusters

x

x x x Compute centroids

Reassign clusters

Converged!

Time Complexity
• Assume computing distance between two

instances is O(N) where N is the dimensionality
of the vectors.

• Reassigning clusters for n points: O(kn) distance
computations, or O(knN).

• Computing centroids: Each instance gets added
once to some centroid: O(nN).

• Assume these two steps are each done once for i
iterations: O(iknN).

• Linear in all relevant factors, assuming a fixed
number of iterations, more efficient than HAC.

Buckshot Algorithm

Problem
• Results can vary based on random seed selection,

especially for high-dimensional data.
• Some seeds can result in poor convergence rate, or

convergence to sub-optimal clusterings.
Idea: Combine HAC and K-means clustering.
• First randomly take a sample of instances of size
• Run group-average HAC on this sample n1/2

• Use the results of HAC as initial seeds for K-means.
• Overall algorithm is efficient and avoids problems of

bad seed selection.

Clustering as Prediction

• Setup

– Learning Task: 𝑃(𝑋)

– Training Sample: 𝑆 = (𝑥 1, … , 𝑥 𝑛)

– Hypothesis Space: 𝐻 = ℎ1, … , ℎ 𝐻 each

describes 𝑃(𝑋|ℎ𝑖) where ℎ𝑖 are parameters

– Goal: learn which 𝑃(𝑋|ℎ𝑖) produces the data

• What to predict?

– Predict where new points are going to fall

Gaussian Mixtures and EM

• Gaussian Mixture Models
– Assume

 𝑃 𝑋 = 𝑥 ℎ𝑖 = 𝑃 𝑋 = 𝑥 𝑌 = 𝑗, ℎ𝑖 𝑃(𝑌 = 𝑗)
𝑘
𝑗=1

where 𝑃 𝑋 = 𝑥 𝑌 = 𝑗, ℎ = 𝑁(𝑋 = 𝑥 |𝜇 𝑗 , Σ𝑗)
and ℎ = (𝜇 1, … , 𝜇 𝑘 , Σ1, … , Σ𝑘).

• EM Algorithm
– Assume 𝑃(𝑌) and 𝑘 known and Σ𝑖 = 1.
– REPEAT

• 𝜇 𝑗 =
 𝑃 𝑌=𝑗 𝑋=𝑥 𝑖,𝜇𝑗 𝑥 𝑖
𝑛
𝑖=1

 𝑃 𝑌=𝑗 𝑋=𝑥 𝑖,𝜇𝑗
𝑛
𝑖=1

• 𝑃 𝑌 = 𝑗 𝑋 = 𝑥 𝑖 , 𝜇 𝑗 =
𝑃 𝑋=𝑥 𝑖 𝑌=𝑗,𝜇𝑗)𝑃(𝑌=𝑗)

 𝑃 𝑋=𝑥 𝑖 𝑌=𝑙,𝜇𝑗)𝑃(𝑌=𝑙)
𝑘
𝑙=1

=
e
−0.5 𝑥𝑖−𝜇𝑗

2

 𝑃(𝑌=𝑗)

 𝑒−0.5 𝑥𝑖−𝜇𝑙
2
 𝑃(𝑌=𝑙)𝑘

𝑙=1

