Instance-Based Learning

CS4780/5780 - Machine Learning
 Fall 2013

Thorsten Joachims
Cornell University

Reading: Mitchell Chapter 1 \& Sections 8.1-8.2

Concept Learning

- Definition:

Acquire an operational definition of a general category of objects given positive and negative training examples.

Also called: binary classification, binary supervised learning,...

Concept Learning Example

	correct (complete, partial, guessing)	color (yes, no)	original (yes, no)	presentation (clear, unclear, cryptic)	binder (yes, no)	A+
1	complete	yes	yes	clear	no	yes
2	complete	no	yes	clear	no	yes
3	partial	yes	no	unclear	no	no
4	complete	yes	yes	clear	yes	yes

Instance Space X: Set of all possible objects describable by attributes (often called features).

Concept c: Subset of objects from X (c is unknown).
Target Function f: Characteristic function indicating membership in c based on attributes (i.e. label) (f is unknown).

Training Data S: Set of instances labeled with target function.

Concept Learning as Learning a Binary Function

- Task:
- Learn (to imitate) a function $\mathrm{f}: \mathrm{X} \rightarrow\{+1,-1\}$
- Training Examples:
- Learning algorithm is given the correct value of the function for particular inputs \rightarrow training examples
- An example is a pair (x, y), where x is the input and $y=f(x)$ is the output of the target function applied to x.
- Goal:
- Find a function

$$
h: X \rightarrow\{+1,-1\}
$$

that approximates

$$
f: X \rightarrow\{+1,-1\}
$$

as well as possible.

K-Nearest Neighbor (KNN)

- Given: Training data $\left(\left(\vec{x}_{1}, y_{1}\right), \ldots,\left(\vec{x}_{n}, y_{n}\right)\right)$
- Attribute vectors: $\vec{x}_{i} \in X$
- Labels:
$y_{i} \in Y$
- Parameter:
- Similarity function: $K: X \times X \rightarrow \mathfrak{R}$
- Number of nearest neighbors to consider: k
- Prediction rule
- New example x,
- K-nearest neighbors: k train examples with largest $K\left(\vec{x}_{i}, \vec{x}^{\prime}\right)$

$$
h\left(\vec{x}^{\prime}\right)=\arg \max _{y \in Y}\left\{\sum_{i \in \operatorname{knn}\left(\vec{x}^{\prime}\right)} 1_{\left[y_{i}=y\right]}\right\}
$$

KNN Example

	correct (complete, partial, guessing)	color (yes, no)	original (yes, no)	presentation (clear, unclear, cryptic)	binder (yes, no)	A+
$\mathbf{1}$	complete	yes	yes	clear	no	yes
$\mathbf{2}$	complete	no	yes	clear	no	yes
$\mathbf{3}$	partial	yes	no	unclear	no	no
$\mathbf{4}$	complete	yes	yes	clear	yes	yes

- How will new examples be classified?
- Similarity function?
- Value of k ?

$$
h\left(\vec{x}^{\prime}\right)=\arg \max _{y \in Y}\left\{\sum_{i \in \operatorname{knn}\left(\vec{x}^{\prime}\right)} 1_{\left[y_{i}=y\right]}\right\}
$$

Weighted K-Nearest Neighbor

- Given: Training datadata $\left(\left(\vec{x}_{1}, y_{1}\right), \ldots,\left(\vec{x}_{n}, y_{n}\right)\right)$
- Attribute vectors: $\vec{x}_{i} \in X$
- Target attribute: $y_{i} \in Y$
- Parameter:
- Similarity function: $K: X \times X \rightarrow \Re$
- Number of nearest neighbors to consider: k
- Prediction rule
- New example x,
- K-nearest neighbors: k train examples with largest $K\left(\vec{x}_{i}, \vec{x}^{\prime}\right)$

$$
h\left(\vec{x}^{\prime}\right)=\arg \max _{y \in Y}\left\{\sum_{i \in \operatorname{knn}\left(\vec{x}^{\prime}\right)} 1_{\left[y_{i}=y\right]} K\left(\vec{x}_{i}, \vec{x}^{\prime}\right)\right\}
$$

Types of Attributes

- Symbolic (nominal)
- EyeColor \{brown, blue, green\}
- Boolean
- alive \{TRUE,FALSE\}
- Numeric
- Integer: age [0, 105]
- Real: height
- Structural
- Natural language sentence: parse tree
- Protein: sequence of amino acids

Example:

Expensive Housing (>\$200 / sqft)

Example: Effect of k

1-Nearest Neighbor

15-Nearest Neighbors

Hastie, Tibshirani, Friedman 2001

Supervised Learning

- Task:
- Learn (to imitate) a function $\mathrm{f}: \mathrm{X} \rightarrow \mathrm{Y}$
- Training Examples:
- Learning algorithm is given the correct value of the function for particular inputs \rightarrow training examples
- An example is a pair $(x, f(x))$, where x is the input and $f(x)$ is the output of the function applied to x.
- Goal:
- Find a function

$$
\mathrm{h}: \mathrm{X} \rightarrow \mathrm{Y}
$$

that approximates

$$
f: X \rightarrow Y
$$

as well as possible.

Weighted K-NN for Regression

- Given: Training datadata $\left(\left(\vec{x}_{1}, y_{1}\right), \ldots,\left(\vec{x}_{n}, y_{n}\right)\right)$
- Attribute vectors: $\vec{x}_{i} \in X$
- Target attribute: $y_{i} \in \Re$
- Parameter:
- Similarity function: $K: X \times X \rightarrow \mathfrak{R}$
- Number of nearest neighbors to consider: k
- Prediction rule
- New example x,
- K-nearest neighbors: k train examples with largest $K\left(\vec{x}_{i}, \vec{x}^{\prime}\right)$

$$
h\left(\vec{x}^{\prime}\right)=\frac{\sum_{i \in \operatorname{knn}\left(\vec{x}^{\prime}\right)} y_{i} K\left(\vec{x}_{i}, \vec{x}^{\prime}\right)}{\sum_{i \in \operatorname{knn}\left(\vec{x}^{\prime}\right)} K\left(\vec{x}_{i}, \vec{x}^{\prime}\right)}
$$

Collaborative Filtering

```
O
& \hat{|}@\mathrm{ movies.netflix.com/WiHome}
(8) CMS © FacultyCenter © Brio © e-Shop © Finance © colts \(\boldsymbol{*}\) dus Wiki © Thermostat © Mu Other
```

Rating Matrix	$\mathrm{m}_{\mathbf{1}}$	$\mathrm{m}_{\mathbf{2}}$	$\mathrm{m}_{\mathbf{3}}$	m_{4}	\mathbf{m}_{5}	\mathbf{m}_{6}
u_{1}		1	5		3	5
u_{2}		5	1	1	3	1
u_{3}		2	4		1	5
u	$?$	1	4	$?$	$?$	$?$

Recently Watched
Top 10 for Thorsten

1

