
Clustering

CS4780/5780 – Machine Learning
Fall 2012

Thorsten Joachims
Cornell University

Reading: Manning/Raghavan/Schuetze,

Chapters 16 (not 16.3) and 17
(http://nlp.stanford.edu/IR-book/)

http://nlp.stanford.edu/IR-book/
http://nlp.stanford.edu/IR-book/
http://nlp.stanford.edu/IR-book/
http://nlp.stanford.edu/IR-book/

Outline

• Supervised vs. Unsupervised Learning

• Hierarchical Clustering

– Hierarchical Agglomerative Clustering (HAC)

• Non-Hierarchical Clustering

– K-means

– Mixtures of Gaussians and EM-Algorithm

Supervised Learning
vs. Unsupervised Learning

• Supervised Learning
– Classification: partition examples into groups

according to pre-defined categories
– Regression: assign value to feature vectors
– Requires labeled data for training

• Unsupervised Learning
– Clustering: partition examples into groups when no

pre-defined categories/classes are available
– Novelty detection: find changes in data
– Outlier detection: find unusual events (e.g. hackers)
– Only instances required, but no labels

Clustering

• Partition unlabeled examples into disjoint subsets of
clusters, such that:

– Examples within a cluster are similar

– Examples in different clusters are different

• Discover new categories in an unsupervised manner
(no sample category labels provided).

Applications of Clustering

• Cluster retrieved documents
– to present more organized and understandable results to

user “diversified retrieval”

• Detecting near duplicates
– Entity resolution

• E.g. “Thorsten Joachims” == “Thorsten B Joachims”

– Cheating detection

• Exploratory data analysis
• Automated (or semi-automated) creation of

taxonomies
– e.g. Yahoo-style

• Compression

Applications of Clustering

Clustering Example

Clustering Example

Clustering Example

Clustering Example

Clustering Example

Similarity (Distance) Measures
• Euclidian distance (L2 norm):

• L1 norm:

• Cosine similarity:

• Kernels

𝐿2 𝑥 , 𝑥
′ = 𝑥𝑖 − 𝑥𝑖

′ 2
𝑁

𝑖=1

𝐿1 𝑥 , 𝑥
′ = 𝑥𝑖 − 𝑥𝑖

′
𝑁

𝑖=1

cos 𝑥 , 𝑥 ′ =
𝑥 ∗ 𝑥 ′

𝑥 𝑥 ′

Hierarchical Clustering

• Build a tree-based hierarchical taxonomy from a
set of unlabeled examples.

• Recursive application of a standard clustering
algorithm can produce a hierarchical clustering.

animal

vertebrate

fish reptile amphib. mammal worm insect crustacean

invertebrate

Agglomerative vs. Divisive
Clustering

• Agglomerative (bottom-up) methods start with each
example in its own cluster and iteratively combine
them to form larger and larger clusters.

• Divisive (top-down) separate all examples
immediately into clusters.

animal

vertebrate

fish reptile amphib. mammal worm insect crustacean

invertebrate

Hierarchical Agglomerative
Clustering (HAC)

• Assumes a similarity function for determining the
similarity of two clusters.

• Starts with all instances in a separate cluster and then
repeatedly joins the two clusters that are most similar
until there is only one cluster.

• The history of merging forms a binary tree or hierarchy.
• Basic algorithm:

• Start with all instances in their own cluster.
• Until there is only one cluster:

• Among the current clusters, determine the two
 clusters, ci and cj, that are most similar.
• Replace ci and cj with a single cluster ci cj

Cluster Similarity

• How to compute similarity of two clusters each
possibly containing multiple instances?

– Single link: Similarity of two most similar members.

– Complete link: Similarity of two least similar
members.

– Group average: Average similarity between
members.

Single-Link HAC

1 2

3 4

5 6

7 8

• When computing cluster similarity, use maximum
similarity of pairs:

),(max),(

,
yxsimccsim

ji cycx
ji

→ Can result in “straggly”
(long and thin) clusters
due to chaining effect.

Complete-Link HAC

1 2

3 4

5 6

7 8

• When computing cluster similarity, use minimum
similarity of pairs:

),(min),(

,
yxsimccsim

ji cycx
ji

→ Makes more “tight,”
spherical clusters.

Computational Complexity of HAC

• In the first iteration, all HAC methods need to
compute similarity of all pairs of n individual
instances which is O(n2).

• In each of the subsequent O(n) merging
iterations, it must compute the distance between
the most recently created cluster and all other
existing clusters.

• In order to maintain the similarity matrix in O(n2)
overall, computing the similarity to any other
cluster must each be done in constant time.

• Maintain Heap to find smallest pair O(n2 log n)

c2 c1 x5

c2

c1 1 0.5

x5 0.5 1

x1 x2 c1 x5

x1 1 0.8 0.3

x2 0.8 1 0.2

c1 0.5

x5 0.3 0.2 0.5 1

Single-Link Example
x1 x2 x3 x4 x5

x1 1 0.8 0.2 0.7 0.3

x2 0.8 1 0.1 0.5 0.2

x3 0.2 0.1 1 0.9 0.5

x4 0.7 0.5 0.9 1 0.4

x5 0.3 0.2 0.5 0.4 1

x1 x2 c1 x5

x1 1 0.8 0.7 0.3

x2 0.8 1 0.5 0.2

c1 0.7 0.5 1 0.5

x5 0.3 0.2 0.5 1

Merge x3,x4
replace with max

c2 c1 x5

c2 1 0.7 0.3

c1 0.7 1 0.5

x5 0.3 0.5 1

Merge x1,x2
replace with max

c3 x5

c3 1 0.5

x5 0.5 1

Merge c1,c2
replace with max

Computing Cluster Similarity

• After merging ci and cj, the similarity of the
resulting cluster to any other cluster, ck, can be
computed by:

– Single Link:

– Complete Link:

)),(),,(max()),((kjkikji ccsimccsimcccsim

)),(),,(min()),((kjkikji ccsimccsimcccsim

Group Average
Agglomerative Clustering

• Use average similarity across all pairs within
the merged cluster to measure the similarity
of two clusters.

• Compromise between single and complete
link.

)(:)(

),(
)1(

1
),(

ji jiccx xyccyjiji

ji yxsim
cccc

ccsim

Computing
Group Average Similarity

• Assume cosine similarity and normalized
vectors with unit length.

• Always maintain sum of vectors in each
cluster.

• Compute similarity of clusters in constant
time:

jcx

j xcs

)(

)1||||)(|||(|

|)||(|))()(())()((
),(

iiii

iijiji

ji
cccc

cccscscscs
ccsim

Non-Hierarchical Clustering

• K-means clustering (“hard”)

• Mixtures of Gaussians and training via
Expectation maximization Algorithm (“soft”)

Clustering Criterion

• Evaluation function that assigns a (usually
real-valued) value to a clustering
– Clustering criterion typically function of

• within-cluster similarity and

• between-cluster dissimilarity

• Optimization
– Find clustering that maximizes the criterion

• Global optimization (often intractable)

• Greedy search

• Approximation algorithms

Centroid-Based Clustering

• Assumes instances are real-valued vectors.

• Clusters represented via centroids (i.e. average of
points in a cluster) c:

• Reassignment of instances to clusters is based on
distance to the current cluster centroids.

cx

x
c

||

1
(c)μ

K-Means Algorithm

• Input: k = number of clusters, distance measure d

• Select k random instances {s1, s2,… sk} as seeds.

• Until clustering converges or other stopping criterion:

• For each instance xi:

• Assign xi to the cluster cj such that d(xi, sj) is min.

• For each cluster cj //update the centroid of each cluster

• sj = (cj)

K-means Example
(k=2)

Pick seeds

Reassign clusters

Compute centroids

x

x

Reassign clusters

x

x x x Compute centroids

Reassign clusters

Converged!

Time Complexity
• Assume computing distance between two

instances is O(N) where N is the dimensionality
of the vectors.

• Reassigning clusters for n points: O(kn) distance
computations, or O(knN).

• Computing centroids: Each instance gets added
once to some centroid: O(nN).

• Assume these two steps are each done once for i
iterations: O(iknN).

• Linear in all relevant factors, assuming a fixed
number of iterations, more efficient than HAC.

Buckshot Algorithm

Problem
• Results can vary based on random seed selection,

especially for high-dimensional data.
• Some seeds can result in poor convergence rate, or

convergence to sub-optimal clusterings.
Idea: Combine HAC and K-means clustering.
• First randomly take a sample of instances of size
• Run group-average HAC on this sample n1/2

• Use the results of HAC as initial seeds for K-means.
• Overall algorithm is efficient and avoids problems of

bad seed selection.

Clustering as Prediction

• Setup

– Learning Task: 𝑃(𝑋)

– Training Sample: 𝑆 = (𝑥 1, … , 𝑥 𝑛)

– Hypothesis Space: 𝐻 = ℎ1, … , ℎ 𝐻 each

describes 𝑃(𝑋|ℎ𝑖) where ℎ𝑖 are parameters

– Goal: learn which 𝑃(𝑋|ℎ𝑖) produces the data

• What to predict?

– Predict where new points are going to fall

Gaussian Mixtures and EM

• Gaussian Mixture Models
– Assume

 𝑃 𝑋 = 𝑥 ℎ𝑖 = 𝑃 𝑋 = 𝑥 𝑌 = 𝑗, ℎ𝑖 𝑃(𝑌 = 𝑗)
𝑘
𝑗=1

where 𝑃 𝑋 = 𝑥 𝑌 = 𝑗, ℎ = 𝑁(𝑋 = 𝑥 |𝜇 𝑗 , Σ𝑗)
and ℎ = (𝜇 1, … , 𝜇 𝑘 , Σ1, … , Σ𝑘).

• EM Algorithm
– Assume 𝑃(𝑌) and 𝑘 known and Σ𝑖 = 1.
– REPEAT

• 𝜇 𝑗 =
 𝑃 𝑌=𝑗 𝑋=𝑥 𝑖,𝜇𝑗 𝑥 𝑖
𝑛
𝑖=1

 𝑃 𝑌=𝑗 𝑋=𝑥 𝑖,𝜇𝑗
𝑛
𝑖=1

• 𝑃 𝑌 = 𝑗 𝑋 = 𝑥 𝑖 , 𝜇 𝑗 =
𝑃 𝑋=𝑥 𝑖 𝑌=𝑗,𝜇𝑗)𝑃(𝑌=𝑗)

 𝑃 𝑋=𝑥 𝑖 𝑌=𝑙,𝜇𝑗)𝑃(𝑌=𝑙)
𝑘
𝑙=1

=
e
−0.5 𝑥𝑖−𝜇𝑗

2

 𝑃(𝑌=𝑗)

 𝑒−0.5 𝑥𝑖−𝜇𝑙
2
 𝑃(𝑌=𝑙)𝑘

𝑙=1

