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Outline 

• Supervised vs. Unsupervised Learning 

• Hierarchical Clustering 

– Hierarchical Agglomerative Clustering (HAC) 

• Non-Hierarchical Clustering 

– K-means 

– Mixtures of Gaussians and EM-Algorithm 



Supervised Learning  
vs. Unsupervised Learning 

• Supervised Learning 
– Classification: partition examples into groups 

according to pre-defined categories 
– Regression: assign value to feature vectors 
– Requires labeled data for training 

• Unsupervised Learning 
– Clustering: partition examples into groups when no 

pre-defined categories/classes are available 
– Novelty detection: find changes in data 
– Outlier detection: find unusual events (e.g. hackers) 
– Only instances required, but no labels 



Clustering 

• Partition unlabeled examples into disjoint subsets of 
clusters, such that: 

– Examples within a cluster are similar 

– Examples in different clusters are different 

• Discover new categories in an unsupervised manner 
(no sample category labels provided). 



Applications of Clustering 

• Cluster retrieved documents  
– to present more organized and understandable results to 

user  “diversified retrieval” 

• Detecting near duplicates  
– Entity resolution 

• E.g. “Thorsten Joachims” == “Thorsten B Joachims” 

– Cheating detection 

• Exploratory data analysis 
• Automated (or semi-automated) creation of 

taxonomies  
– e.g. Yahoo-style 

• Compression 
 



Applications of Clustering 
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Similarity (Distance) Measures 
• Euclidian distance (L2 norm): 
 
  

 
• L1 norm: 

 
 
 
• Cosine similarity: 

 
 
 

• Kernels 
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Hierarchical Clustering 

• Build a tree-based hierarchical taxonomy from a 
set of unlabeled examples. 

 

 

 

 

 

• Recursive application of a standard clustering 
algorithm can produce a hierarchical clustering. 
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Agglomerative vs. Divisive 
Clustering 

• Agglomerative (bottom-up) methods start with each 
example in its own cluster and iteratively combine 
them to form larger and larger clusters. 

• Divisive (top-down) separate all examples 
immediately into clusters. 
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Hierarchical Agglomerative 
Clustering (HAC) 

• Assumes a similarity function for determining the 
similarity of two clusters. 

• Starts with all instances in a separate cluster and then 
repeatedly joins the two clusters that are most similar 
until there is only one cluster. 

• The history of merging forms a binary tree or hierarchy. 
• Basic algorithm: 

• Start with all instances in their own cluster. 
• Until there is only one cluster: 

• Among the current clusters, determine the two  
  clusters, ci and cj, that are most similar. 
• Replace ci and cj with a single cluster ci  cj  



Cluster Similarity 

• How to compute similarity of two clusters each 
possibly containing multiple instances? 

– Single link: Similarity of two most similar members. 

– Complete link: Similarity of two least similar 
members. 

– Group average: Average similarity between 
members. 



Single-Link HAC 
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• When computing cluster similarity, use maximum 
similarity of pairs: 
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→ Can result in “straggly” 
(long and thin) clusters 
due to chaining effect. 



Complete-Link HAC 
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7 8 

• When computing cluster similarity, use minimum 
similarity of pairs: 

 
),(min),(

,
yxsimccsim

ji cycx
ji




→ Makes more “tight,” 
spherical clusters. 



Computational Complexity of HAC 

• In the first iteration, all HAC methods need to 
compute similarity of all pairs of n individual 
instances which is O(n2). 

• In each of the subsequent O(n) merging 
iterations, it must compute the distance between 
the most recently created cluster and all other 
existing clusters. 

• In order to maintain the similarity matrix in O(n2) 
overall, computing the similarity to any other 
cluster must each be done in constant time. 

• Maintain Heap to find smallest pair  O(n2 log n) 
 



c2 c1 x5 

c2 

c1 1 0.5 

x5 0.5 1 

x1 x2 c1 x5 

x1 1 0.8 0.3 

x2 0.8 1 0.2 

c1 0.5 

x5 0.3 0.2 0.5 1 

Single-Link Example 
x1 x2 x3 x4 x5 

x1 1 0.8 0.2 0.7 0.3 

x2 0.8 1 0.1 0.5 0.2 

x3 0.2 0.1 1 0.9 0.5 

x4 0.7 0.5 0.9 1 0.4 

x5 0.3 0.2 0.5 0.4 1 

x1 x2 c1 x5 

x1 1 0.8 0.7 0.3 

x2 0.8 1 0.5 0.2 

c1 0.7 0.5 1 0.5 

x5 0.3 0.2 0.5 1 

Merge x3,x4 
replace with max 

c2 c1 x5 

c2 1 0.7 0.3 

c1 0.7 1 0.5 

x5 0.3 0.5 1 

Merge x1,x2 
replace with max 

c3 x5 

c3 1 0.5 

x5 0.5 1 

Merge c1,c2 
replace with max 



Computing Cluster Similarity 

• After merging ci and cj, the similarity of the 
resulting cluster to any other cluster, ck, can be 
computed by: 

– Single Link: 

 

 

– Complete Link: 
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Group Average  
Agglomerative Clustering 

• Use average similarity across all pairs within 
the merged cluster to measure the similarity 
of two clusters. 

 

 

 

• Compromise between single and complete 
link. 
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Computing  
Group Average Similarity 

• Assume cosine similarity and normalized 
vectors with unit length. 

• Always maintain sum of vectors in each 
cluster. 

 

• Compute similarity of clusters in constant 
time: 
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Non-Hierarchical Clustering 

• K-means clustering (“hard”) 

• Mixtures of Gaussians and training via 
Expectation maximization Algorithm (“soft”) 



Clustering Criterion 

• Evaluation function that assigns a (usually 
real-valued) value to a clustering 
– Clustering criterion typically function of  

• within-cluster similarity and  

• between-cluster dissimilarity 

• Optimization 
– Find clustering that maximizes the criterion 

• Global optimization (often intractable) 

• Greedy search 

• Approximation algorithms 



Centroid-Based Clustering 

• Assumes instances are real-valued vectors. 

• Clusters represented via centroids (i.e. average of 
points in a cluster) c: 

 

 

 

 

• Reassignment of instances to clusters is based on 
distance to the current cluster centroids. 
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K-Means Algorithm 

• Input: k = number of clusters, distance measure d  

• Select k random instances {s1, s2,… sk} as seeds. 

• Until clustering converges or other stopping criterion: 

• For each instance xi: 

• Assign xi to the cluster cj such that d(xi, sj) is min. 

• For each cluster cj  //update the centroid of each cluster 

• sj = (cj)  



K-means Example 
(k=2) 

Pick seeds 

Reassign clusters 

Compute centroids 

x 

x 

Reassign clusters 

x 

x x x Compute centroids 

Reassign clusters 

Converged! 



Time Complexity 
• Assume computing distance between two 

instances is O(N) where N is the dimensionality 
of the vectors. 

• Reassigning clusters for n points: O(kn) distance 
computations, or O(knN). 

• Computing centroids: Each instance gets added 
once to some centroid: O(nN). 

• Assume these two steps are each done once for i 
iterations:  O(iknN). 

• Linear in all relevant factors, assuming a fixed 
number of iterations, more efficient than HAC. 



Buckshot Algorithm 

Problem 
• Results can vary based on random seed selection, 

especially for high-dimensional data. 
• Some seeds can result in poor convergence rate, or 

convergence to sub-optimal clusterings. 
Idea: Combine HAC and K-means clustering. 
• First randomly take a sample of instances of size   
• Run group-average HAC on this sample n1/2 

• Use the results of HAC as initial seeds for K-means. 
• Overall algorithm is efficient and avoids problems of 

bad seed selection. 



Clustering as Prediction 

• Setup 

– Learning Task: 𝑃(𝑋) 

– Training Sample: 𝑆 = (𝑥 1, … , 𝑥 𝑛) 

– Hypothesis Space: 𝐻 = ℎ1, … , ℎ 𝐻  each 

describes 𝑃(𝑋|ℎ𝑖) where ℎ𝑖 are parameters 

– Goal: learn which 𝑃(𝑋|ℎ𝑖) produces the data 

• What to predict? 

– Predict where new points are going to fall 



Gaussian Mixtures and EM 

• Gaussian Mixture Models 
– Assume  
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where 𝑃 𝑋 = 𝑥 𝑌 = 𝑗, ℎ = 𝑁(𝑋 = 𝑥 |𝜇 𝑗 , Σ𝑗)  
and ℎ = (𝜇 1, … , 𝜇 𝑘 , Σ1, … , Σ𝑘). 

• EM Algorithm 
– Assume 𝑃(𝑌) and 𝑘 known and Σ𝑖 = 1. 
– REPEAT 
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