

Statistical Learning Theory

CS4780/5780 – Machine Learning Fall 2012

Thorsten Joachims Cornell University

Reading: Mitchell Chapter 7 (not 7.4.4 and 7.5)

Outline

Questions in Statistical Learning Theory:

- How good is the learned rule after n examples?
- How many examples do I need before the learned rule is accurate?
- What can be learned and what cannot?
- Is there a universally best learning algorithm?

In particular, we will address:

What is the true error of h if we only know the training error of h?

- Finite hypothesis spaces and zero training error
- Finite hypothesis spaces and non-zero training error
- Infinite hypothesis spaces and VC dimension

Can you Convince me of your Psychic Abilities?

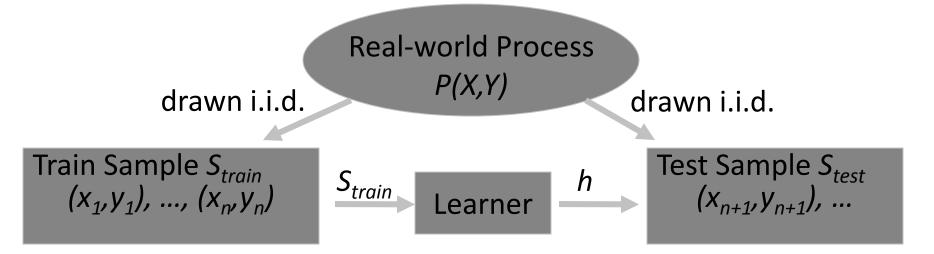
Game

- I think of n bits
- | H| players try to guess the bit sequence
- If somebody in the class guesses my bit sequence, that person clearly has telepathic abilities — right?

Question:

- If at least one player guesses the bit sequence correctly, is there any significant evidence that he/she has telepathic abilities?
- How large would n and |H| have to be?

Discriminative Learning and Prediction Reminder



- Goal: Find h with small prediction error $Err_{P}(h)$ over P(X,Y).
- Discriminative Learning: Given H, find h with small error $Err_{S_{train}}(h)$ on training sample S_{train} .
- Training Error: Error $Err_{S_{train}}(h)$ on training sample.
- Test Error: Error $Err_{S_{test}}(h)$ on test sample is an estimate of $Err_{P}(h)$

Review of Definitions

Definition: A particular instance of a learning problem is described by a probability distribution P(X,Y).

Definition: A sample $S = ((\vec{x}_1, y_1), ..., (\vec{x}_n, y_n))$ is independently identically distributed (i.i.d.) according to P(X, Y).

Definition: The error on sample S $Err_S(h)$ of a hypothesis h is $Err_S(h) = \frac{1}{n} \sum_{i=1}^{n} \Delta(h(\vec{x}_i), y_i)$.

Definition: The prediction/generalization/true error $Err_P(h)$ of a hypothesis h for a learning task P(X,Y) is

$$Err_P(h) = \sum_{\vec{x} \in X, y \in Y} \Delta(h(\vec{x}), y) P(X = \vec{x}, Y = y).$$

Definition: The hypothesis space H is the set of all possible classification rules available to the learner.

Useful Formulas

 Binomial Distribution: The probability of observing x heads in a sample of n independent coin tosses, where in each toss the probability of heads is p, is

$$P(X = x | p, n) = \frac{n!}{r! (n - r)!} p^{x} (1 - p)^{n - x}$$

Union Bound:

$$P(X_1 = x_1 \lor X_2 = x_2 \lor \dots \lor X_n = x_n) \le \sum_{i=1}^n P(X_i = x_i)$$

Unnamed:

$$(1 - \epsilon) \le e^{-\epsilon}$$

Generalization Error Bound: Finite H, Zero Error

- Setting
 - Sample of n labeled instances S_{train}
 - Learning Algorithm L with a finite hypothesis space H
 - − At least one $h \in H$ has zero prediction error ($\rightarrow Err_{S_{train}}(h)=0$)
 - Learning Algorithm L returns zero training error hypothesis h
- What is the probability that the prediction error of \hat{h} is larger than ε ?

$$P(Err_P(\hat{h}) \ge \epsilon) \le |H|e^{-\epsilon n}$$

Training Sample
$$S_{train}$$
 $(x_1, y_1), ..., (x_n, y_n)$ Learner h Test Sample S_{test} $(x_{n+1}, y_{n+1}), ...$

Sample Complexity: Finite H, Zero Error

- Setting
 - Sample of n labeled instances S_{train}
 - Learning Algorithm L with a finite hypothesis space H
 - − At least one $h \in H$ has zero prediction error ($\rightarrow Err_{S_{train}}(h)=0$)
 - Learning Algorithm L returns zero training error hypothesis h
- How many training examples does L need so that with probability at least $(1-\delta)$ it learns an \hat{h} with prediction error less than ε ?

$$n \ge \frac{1}{\epsilon} (\log(|H|) - \log(\delta))$$

Training Sample
$$S_{train}$$
 $(x_1, y_1), ..., (x_n, y_n)$

Learner

Test Sample S_{test} $(x_{n+1}, y_{n+1}), ...$

Probably Approximately Correct Learning

Definition: C is **PAC-learnable** by learning algorithm \mathcal{L} using H and a sample S of n examples drawn i.i.d. from some fixed distribution P(X) and labeled by a concept $c \in C$, if for sufficiently large n

$$P(Err_P(h_{\mathcal{L}(S)}) \le \epsilon) \ge (1 - \delta)$$

for all $c \in C$, $\epsilon > 0$, $\delta > 0$, and P(X). \mathcal{L} is required to run in polynomial time dependent on $1/\epsilon, 1/\delta, n$, the size of the training examples, and the size of c.

Example: Smart Investing

- Task: Pick stock analyst based on past performance.
- Experiment:
 - Review analyst prediction "next day up/down" for past 10 days. Pick analyst that makes the fewest errors.
 - Situation 1:
 - 1 stock analyst {A1}, A1 makes 5 errors
 - Situation 2:
 - 3 stock analysts {B1,B2,B3}, B2 best with 1 error
 - Situation 3:
 - 1003 stock analysts {C1,...,C1000},
 C543 best with 0 errors
- Question: Which analysts are you most confident in, A1, B2, or C543?

Useful Formula

Hoeffding/Chernoff Bound:

For any distribution P(X) where X can take the values 0 and 1, the probability that an average of an i.i.d. sample deviates from its mean p by more than ϵ is bounded as

$$\left| P\left(\left| \left(\frac{1}{n} \sum_{i=1}^{n} x_i \right) - p \right| > \epsilon \right) \le 2e^{-2n\epsilon^2} \right|$$

Generalization Error Bound: Finite H, Non-Zero Error

- Setting
 - Sample of n labeled instances S
 - Learning Algorithm L with a finite hypothesis space H
 - L returns hypothesis $\hat{h}=L(S)$ with lowest training error
- What is the probability that the prediction error of \hat{h} exceeds the fraction of training errors by more than ε ?

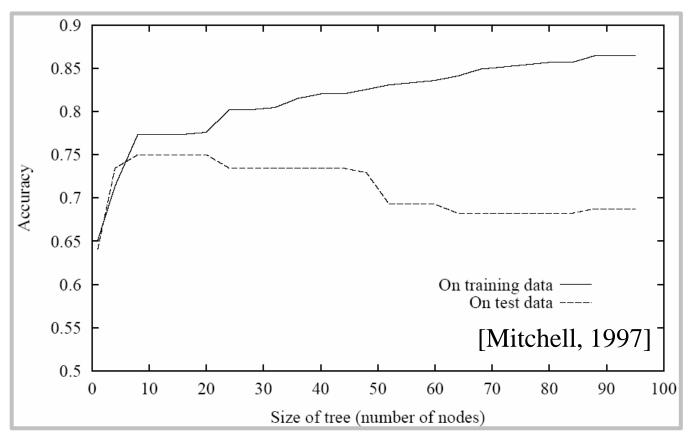
$$P\left(\left|Err_S(h_{\mathcal{L}(S)}) - Err_P(h_{\mathcal{L}(S)})\right| \ge \epsilon\right) \le 2|H|e^{-2\epsilon^2 n}$$

Training Sample
$$S_{train}$$

$$(x_1, y_1), \dots, (x_n, y_n)$$
Learner
$$\hat{h}$$
Test Sample S_{test}

$$(x_{n+1}, y_{n+1}), \dots$$

Overfitting vs. Underfitting



With probability at least $(1-\delta)$:

$$Err_P(h_{\mathcal{L}(S_{train})}) \le Err_{S_{train}}(h_{\mathcal{L}(S_{train})}) + \sqrt{\frac{(\ln(2|H|) - \ln(\delta))}{2n}}$$

Generalization Error Bound: Infinite H, Non-Zero Error

- Setting
 - Sample of n labeled instances S
 - Learning Algorithm L using a hyp space H with VCDim(H)=d
 - L returns hypothesis $\hat{h}=L(S)$ with lowest training error
- Definition: The VC-Dimension of H is equal to the maximum number d of examples that can be split into two sets in all 2^d ways using functions from H (shattering).
- Given hypothesis space H with VCDim(H) equal to d and an i.i.d. sample S of size n, with probability $(1-\delta)$ it holds that

$$Err_P(h_{\mathcal{L}(S)}) \le Err_S(h_{\mathcal{L}(S)}) + \sqrt{\frac{d\left(\ln\left(\frac{2n}{d}\right) + 1\right) - \ln\left(\frac{\delta}{4}\right)}{n}}$$