Linear Classifiers and Perceptrons

CS4780/5780 – Machine Learning Fall 2012

Thorsten Joachims Cornell University

Reading: Mitchell Chapter 4.4-4.4.2 & Chapter 7.5 Cristianini/Shawe-Taylor Chapter 2-2.1.1

Outline

- Linear classification rules
- Perceptron learning algorithm
- Mistake-bound model
- Perceptron mistake bound

Example: Spam Filtering

	viagra	learning	the	dating	nigeria	spam?
$\vec{x}_1 = ($	1	0	1	0	0)	$y_1 = -1$
$\vec{x}_2 = ($	0	1	1	0	0)	$ y_2 = +1 $
$\vec{x}_3 = ($	0	0	0	0	1)	$ y_3 = -1 $

- Instance Space X:
 - Feature vector of word occurrences => binary features
 - N features (N typically > 50000)
- Target Concept c:
 - Spam (-1) / Ham (+1)

Linear Classification Rules

- Hypotheses of the form
 - unbiased: $h_{\overrightarrow{w}}(\overrightarrow{x}) = \begin{cases} +1 & w_1x_1 + ... + w_Nx_N > 0 \\ -1 & else \end{cases}$
 - biased: $h_{\overrightarrow{w},b}(\overrightarrow{x}) = \begin{cases} +1 & w_1x_1 + ... + w_Nx_N + b > 0 \\ -1 & else \end{cases}$
 - Parameter vector \overrightarrow{w} , scalar b
- Hypothesis space H
 - $H_{unbiased} = \{ h_{\overrightarrow{w}} : \overrightarrow{w} \in \mathbb{R}^N \}$
 - $H_{biased} = \{ h_{\overrightarrow{w},b} \colon \overrightarrow{w} \in \Re^N, b \in \Re \}$
- Notation
 - $w_1 x_1 + \dots + w_N x_N = \overrightarrow{w} \cdot \overrightarrow{x} \quad \text{and} \quad sign(a) = \begin{cases} +1 & a > 0 \\ -1 & else \end{cases}$
 - $h_{\overrightarrow{w}}(\overrightarrow{x}) = sign(\overrightarrow{w} \cdot \overrightarrow{x})$
 - $h_{\overrightarrow{w},b}(\overrightarrow{x}) = sign(\overrightarrow{w} \cdot \overrightarrow{x} + b)$

(Online) Perceptron Algorithm

- Input: $S = ((\vec{x}_1, y_1), ..., (\vec{x}_n, y_n)), \ \vec{x}_i \in \Re^N$, $y_i \in \{-1, 1\}$
- Algorithm:
 - $-\vec{w}_0 = \vec{0}, k = 0$
 - FOR i=1 TO n
 - * IF $y_i(\vec{w}_k \cdot \vec{x}_i) \leq 0$ ### makes mistake
 - $\vec{v}_{k+1} = \vec{w}_k + y_i \vec{x}_i$
 - k = k + 1
 - * ENDIF
 - ENDFOR
- ullet Output: $ec{w}_k$

Margin of a Linear Classifier

Definition: For a linear classifier h_w , the margin δ of an example (\vec{x}, y) with $\vec{x} \in \mathbb{R}^N$ and $y \in \{-1, +1\}$ is $\delta = y(\vec{w} \cdot \vec{x})$.

Definition: The margin is called geometric margin, if $||\vec{w}|| = 1$. Otherwise, functional margin.

Definition: The (hard) margin of an unbiased linear classifier $h_{\vec{w}}$ on a sample S is $\delta = min_{(\vec{x},y) \in S} y(\vec{w} \cdot \vec{x})$.

Definition: The (hard) margin of an unbiased linear classifier $h_{\vec{w}}$ on a task P(X,Y) is $\delta = inf_{S \sim P(X,Y)} min_{(\vec{x},y) \in S} y(\vec{w} \cdot \vec{x}).$

Perceptron Mistake Bound

Theorem: For any sequence of training examples $S = ((\vec{x}_1, y_1), ..., (\vec{x}_n, y_n))$ with

$$R = \max ||\vec{x}_i||,$$

if there exists a weight vector \overrightarrow{w}_{opt} with $\left\|\overrightarrow{w}_{opt}\right\|=1$ and

$$y_i\left(\overrightarrow{w}_{opt}\cdot\overrightarrow{x}_i\right) \geq \delta$$

for all $1 \le i \le n$, then the Perceptron makes at most

$$\frac{R^2}{\delta^2}$$

errors.

(Batch) Perceptron Algorithm

```
Input: S = ((\vec{x}_1, y_1), ..., (\vec{x}_n, y_n)), \ \vec{x}_i \in \Re^N, \ y_i \in \{-1, 1\}, \ I \in [1, 2, ..]
```

Algorithm:

- $\vec{w}_0 = \vec{0}$, k = 0
- repeat
 - FOR i=1 TO n
 - * IF $y_i(\vec{w_k} \cdot \vec{x_i}) \leq 0$ ### makes mistake
 - $\cdot \vec{w}_{k+1} = \vec{w}_k + y_i \vec{x}_i$
 - k = k + 1
 - * ENDIF
 - ENDFOR
- until I iterations reached

Example: Reuters Text Classification

