Prediction and Overfitting

CS4780/5780 – Machine Learning Fall 2012

> Thorsten Joachims Cornell University

Reading: Mitchell Sections 3.6 – 3.7

Learning as Prediction

Definition: A particular instance of a learning problem is described by a probability distribution P(X, Y).

Definition: A sample $S = ((\vec{x}_1, y_1), ..., (\vec{x}_n, y_n))$ is independently identically distributed (i.i.d.) according to P(X, Y) if

 $P(S = ((\vec{x}_1, y_1), ..., (\vec{x}_n, y_n))) = \prod_{i=1}^n P(X = \vec{x}_i, Y = y_i)$

Sample Error and Generalization Error

Definition: The error on sample $S \ Err_S(h)$ of a hypothesis h is $Err_S(h) = \frac{1}{n} \sum_{i=1}^{n} \Delta(h(\vec{x_i}), y_i).$

Definition: $\Delta(a,b)$ is the 0/1-loss function

$$\Delta(a,b) = \begin{cases} 0 & if(a == b) \\ 1 & else \end{cases}$$

Definition: The prediction/generalization/true error $Err_P(h)$ of a hypothesis h for a learning task P(X,Y) is

$$Err_P(h) = \sum_{\vec{x} \in X, y \in Y} \Delta(h(\vec{x}), y) P(X = \vec{x}, Y = y).$$

- Goal: Find h with small prediction error Err_P(h) over P(X,Y).
 Strategy: Find (any?) h with small error Err_{Strain}(h) on training sample S_{train}.
- Training Error: Error *Err_{Strain}(h)* on training sample.
- Test Error: Error $Err_{S_{test}}(h)$ on test sample is an estimate of $Err_{P}(h)$.

Overfitting

• Note: Accuracy = 1.0-Error

Decision Tree Example: revisited

 $\vec{x}_{10} = (c, y, c) y_{10}$

Reduced-Error Pruning

Text Classification Example Results

- Unpruned Tree:
 - Size: 437 nodes Training Error: 0.0% Test Error: 11.0%
- Early Stopping Tree:
 - Size: 299 nodes Training Error: 2.6% Test Error: 9.8%
- Post-Pruned Tree:
 - Size: 167 nodes Training Error: 4.0% Test Error: 10.8%
- Rule Post-Pruning:
 - Size: 164 tests Training Error: 3.1% Test Error: 10.3%
 - Examples of rules
 - IF vs = 1 THEN [99.4%]
 - IF vs = 0 & export = 0 & takeover = 1 THEN + [93.6%]