

Modeling Sequence Data

CS4780/5780 – Machine Learning Fall 2011

Thorsten Joachims Cornell University

Reading:

Manning/Schuetze, Sections 9.1-9.3 (except 9.3.1)

Leeds Online HMM Tutorial (except Forward and Forward/Backward Algorithm)

(http://www.comp.leeds.ac.uk/roger/HiddenMarkovModels/html_dev/main.html)

Outline

- Markov Models in Classification
 - A "less naïve" Bayes for text classification
- Hidden Markov Models
 - Part-of-speech tagging
 - Viterbi Algorithm
 - Estimation with fully observed training data

"Less Naïve" Bayes Classifier

 Example: Classify sentences as insulting/ not insulting

text	Insult?
$\bar{x}_1 = (Peter, is, nice, and, not, stupid)$	-1
$ \bar{x}_2 = (Peter, is, not, nice, and, stupid)$	+1

Assumption (I words in doçument)

$$P(X=\bar{x}|Y=+1) = P(W=w_i|Y=+1) \prod_{i=2}^{n} P(W=w_i|W_{prev}=w_{i-1}, Y=+1)$$

$$P(X=\bar{x}|Y=-1) = P(W=w_i|Y=-1) \prod_{i=2}^{n} P(W=w_i|W_{prev}=w_{i-1}, Y=-1)$$

Decision Rule

$$h_{less}(\bar{x}) = argmax_{y \in \{+1,-1\}} \left\{ P(Y = y) P(W = w_i | Y = y) \prod_{i=2}^{l} P(W = w_i | W_{prev} = w_{i-1}, Y = y) \right\}$$

Markov Model

Definition

- Set of States: $s_1, ..., s_k$
- Start probabilities: P(S=s)
- Transition probabilities: P(S=s | S_{prev}=s')
- Random walk on graph
 - Start in state s with probability P(S=s)
 - Move to next state with probability $P(S=s \mid S_{prev}=s')$

Assumptions

- Limited dependence: Next state depends only on previous state, but no other state (i.e. first order Markov model)
- Stationary: $P(S=s \mid S_{prev}=s')$ does not change

Part-of-Speech Tagging Task

- Assign the correct part of speech (word class) to each word in a document
 - "The/DT planet/NN Jupiter/NNP and/CC its/PRP moons/NNS are/VBP in/IN effect/NN a/DT mini-solar/JJ system/NN ,/, and/CC Jupiter/NNP itself/PRP is/VBZ often/RB called/VBN a/DT star/NN that/IN never/RB caught/VBN fire/NN ./."
- Needed as an initial processing step for a number of language technology applications
 - Information extraction
 - Answer extraction in QA
 - Base step in identifying syntactic phrases for IR systems
 - Critical for word-sense disambiguation (WordNet apps)

– ...

Cornell University Why is POS Tagging Hard?

- Ambiguity
 - He will race/VB the car.
 - When will the race/NN end?
 - I bank/VB at CFCU.
 - Go to the bank/NN!
- Average of ~2 parts of speech for each word
 - The number of tags used by different systems varies a lot. Some systems use < 20 tags, while others use > 400.

Cornell University The POS Learning Problem

Example

sentence	POS
$\bar{x}_1 = (I, bank, at, CFCU)$	$\bar{y}_1 = (PRP, V, PREP, N)$
$\bar{x}_2 = (Go, to, the, bank)$	$ \bar{y}_2 = (V, PREP, DET, N) $

Hidden Markov Model for POS Tagging

States

- Think about as nodes of a graph
- One for each POS tag
- special start state (and maybe end state)

Transitions

- Think about as directed edges in a graph
- Edges have transition probabilities

Output

- Each state also produces a word of the sequence
- Sentence is generated by a walk through the graph

Hidden Markov Model

- States: y ∈ {s₁,...,s_k}
- Outputs symbols: $x \in \{o_1, ..., o_m\}$
- Starting probability $P(Y_1 = y_1)$
 - Specifies where the sequence starts
- Transition probability P(Y = y_i | Y_{i-1} = y_{i-1})
 - Probability that one states succeeds another
- Output/Emission probability $P(X_i = x_i | Y_i = y_i)$
 - Probability that word is generated in this state
- => Every output+state sequence has a probability

$$P(\bar{x}, \bar{y}) = P(x_1, ..., x_l, y_1, ..., y_l)$$

$$= \left[P(y_1)P(x_1|y_1) \prod_{i=2}^{l} P(x_i|y_i)P(y_i|y_{i-1}) \right]$$

Cornell University Estimating the Probabilities

- Given: Fully observed data
 - Pairs of output sequence with their state sequence
- Estimating transition probabilities P(Y_t|Y_{t-1})

$$P(Y_i = a | Y_{i-1} = b) = \frac{\text{\# of times state a follows state b}}{\text{\# of times state b occurs}}$$

Estimating emission probabilities P(X_t|Y_t)

$$P(X_i = a | Y_i = b) = \frac{\text{\# of times output a is observed in state b}}{\text{\# of times state b occurs}}$$

- Smoothing the estimates
 - Laplace smoothing -> uniform prior
 - See naïve Bayes for text classification
- Partially observed data
 - Expectation Maximization (EM)

Viterbi Example

P(X=x Y=y)	1	bank	at	CFCU	go	to	the
DET	0.01	0.01	0.01	0.01	0.01	0.01	0.94
PRP	0.94	0.01	0.01	0.01	0.01	0.01	0.01
N	0.01	0.4	0.01	0.4	0.16	0.01	0.01
PREP	0.01	0.01	0.48	0.01	0.01	0.47	0.01
V	0.01	0.4	0.01	0.01	0.55	0.01	0.01

P(Y=y)		P(Y Y _{prev})	DET	PRP	N	PREP	V
DET	0.3	DET	0.01	0.01	0.96	0.01	0.01
PRP	0.3	PRP	0.01	0.01	0.01	0.2	0.77
N	0.1	N	0.01	0.2	0.3	0.3	0.19
PREP	0.1	PREP	0.3	0.2	0.3	0.19	0.01
V	0.2	V	0.2	0.19	0.3	0.3	0.01

HMM Decoding: Viterbi Algorithm

- Question: What is the most likely state sequence given an output sequence
 - Given fully specified HMM:
 - $P(Y_1 = y_1)$,
 - $P(Y_i = y_i | Y_{i-1} = y_{i-1}),$
 - $P(X_i = x_i | Y_i = y_i)$
 - Find $\bar{y} = \underset{(y_1,...,y_l)}{\operatorname{argmax}} P(x_1,...,x_l,y_1,...,y_l)$

$$= \underset{(y_1,...,y_l)}{\operatorname{argmax}} \left\{ P(y_1)P(x_1|y_1) \prod_{i=2}^{l} P(x_i|y_i)P(y_i|y_{i-1}) \right\}$$

- "Viterbi" algorithm has runtime linear in length of sequence
- Example: find the most likely tag sequence for a given sequence of words

HMM's for POS Tagging

- Design HMM structure (vanilla)
 - States: one state per POS tag
 - Transitions: fully connected
 - Emissions: all words observed in training corpus
- Estimate probabilities
 - Use corpus, e.g. Treebank
 - Smoothing
 - Unseen words?
- Tagging new sentences
 - Use Viterbi to find most likely tag sequence

Experimental Results

Tagger	Accuracy	Training time	Prediction time
HMM	96.80%	20 sec	18.000 words/s
TBL Rules	96.47%	9 days	750 words/s

- Experiment setup
 - WSJ Corpus
 - Trigram HMM model
 - Lexicalized
 - from [Pla and Molina, 2001]

Discriminative vs. Generative

Bayes Rule

$$h_{bayes}(x) = argmax_{y \in Y} [P(Y = y | X = x)]$$

= $argmax_{y \in Y} [P(X = x | Y = y)P(Y = y)]$

- Generative:
 - Make assumptions about P(X = x | Y = y), P(Y = y)
 - Estimate parameters of the two distributions
- Discriminative:
 - Define set of prediction rules (i.e. hypotheses) H
 - Find h in H that best approximates

$$h_{bayes}(x) = argmax_{y \in Y} [P(Y = y | X = x)]$$

- Question: Can we train HMM's discriminately?
 - Later in semester: discriminative training of HMM and general structured prediction.