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) Cornell University Outline

« Transform a linear learner into a non-linear
learner

« Kernels can make high-dimensional spaces
tractable

« Kernels can make non-vectorial data
tractable



Problem:

 some tasks have non-linear structure

* no hyperplane is sufficiently accurate

How can SVMs learn non-linear classification rules?



Extending the Hypothesis
Space
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l[dea: add more features

Input Space

O

> 4 Learn linear rule in feature space.
Example:

| a| b| claafabac|bblbe]ce

> 4 The separating hyperplane in feature space is degree
two polynomial in input space.



Cornell University Exam P le

* Input Space: ¥ = (xz1,xo) (2 attributes)

- Feature Space: ®(%) = (27,23, 21,20, T172, 1)
(6 attributes)




Dual SVM Optimization
Problem
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* Theorem: If w* Is the solution of the Primal and
a* IS the solution of the Dual, then
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) Cornell University Kernels

Problem: Very many Parameters! Polynomials of
degree p over N attributes in input space lead to
O(NP) attributes in feature space!

Solution [Boser et al.]: The dual OP depends only
on inner products => Kernel Functions

K(@,b) = ®(a) - d(b)

Example: For ©(z) = (2%, 23, V221, V225, v2x125, 1)
calculating K (a@,b) = [@ - b+ 1]2 computes inner
product in feature space.

=» no need to represent feature space explicitly.



Cornell University SVM with Kernel
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New hypotheses spaces through new Kernels:

e Linear: K(a,b)=a-b

 Polynomial; K(@.b) = [@-b+ 1]¢

 Radial Basis Function: K(@,b) = exp(—~[@ — b]?)
« Sigmoid: K(@,b) = tanh(~[a@ - b] + ¢)
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Cornell University Examples of Kernels
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Polynomial Radial Basis Function
K(a,b)=1[da b+ 1]2 K(a@,b) = cxp(—~[a — b]2)




I} Cornell University What is a Valid Kernel?

Definition: Let X be a nonempty set. A function
Is a valid kernel in X if for all n and all x,,..., x,
e X It produces a Gram matrix

G; = K(X;, X))
that is symmetric
G=GT
and positive semi-definite

va:alGa >0



How to Construct Valid
Kernels

[} Cornell University

Theorem: Let K; and K, be valid Kernels over X x
X, XCRN, «20,0<A<1,fareal-valued
function on X, ¢:X— R™ with a kernel K, over i&™
x RM, and K a symmetric positive semi-definite

matrix. Then the following functions are valid
Kernels

K(X,z) = A K;(X,2) + (1-1) K,(X,2)
K(X,z) = a K;(X,2)
K(X,z) = K;(X,z) K,(X,2)
K(x,z) = f(x) f(z)
K(x,z) = K3(6(x),9(2))
K(X,z) =x" K z



Kernels for Discrete and
Structured Data
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Kernels for Sequences: Two sequences are similar, if
the have many common and consecutive
subseguences.

Example [Lodhi et al., 2000]: For 0 < A < 1 consider
the following features space

 lcalot|at|balbt|or|ar|br
eay | 22 | o |2 [0 oo oo
e | %2 | 0 | o [0 o % || o

oy | 0 | o | 22 | a2 [ 3] 0 | 0 | 0
oan | 0 | 0 | 0 | A2 ] 0 ] 0 2

=> K(car,cat) = A#, efficient computation via dynamic
programming



Kernels for Non-Vectorial
Data
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* Applications with Non-Vectorial Input Data
—> classify non-vectorial objects
— Protein classification (x is string of amino acids)
— Drug activity prediction (x is molecule structure)
— Information extraction (x is sentence of words)
— Etc.

« Applications with Non-Vectorial Output Data
—> predict non-vectorial objects
— Natural Language Parsing (y Is parse tree)
— Noun-Phrase Co-reference Resolution (y is clustering)
— Search engines (y is ranking)

= Kernels can compute inner products efficiently!



Properties of SVMs with
Kernels
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EXxpressiveness

— SVMs with Kernel can represent any boolean function
(for appropriate choice of kernel)

— SVMs with Kernel can represent any sufficiently
“smooth” function to arbitrary accuracy (for appropriate
choice of kernel)

Computational

— Objective function has no local optima (only one
global)

— Independent of dimensionality of feature space
Design decisions

— Kernel type and parameters
— Value of C



Cornell University ~ S\/MsS for other Problems

« Multi-class Classification

— [Schoelkopf/Smola Book, Section 7.6]
* Regression

— [Schoelkopf/Smola Book, Section 1.6]
e Outlier Detection

— D.M.J. Tax and R.P.W. Duin, "Support vector domain
description”, Pattern Recognition Letters, vol. 20, pp. 1191-
1199, 1999b. 26

» Structural Prediction

— B. Taskar, C. Guestrin, D. Koller - Advances in Neural
Information Processing Systems, 2003.

— |. Tsochantaridis, T. Hofmann, T. Joachims, and Y. Altun,
Support Vector Machine Learning for Interdependent and
Structured Output Spaces, Proceedings of the International
Conference on Machine Learning (ICML), 2004.



