Support Vector Machines: Kernels

CS4780/5780 – Machine Learning Fall 2011

Thorsten Joachims Cornell University

Reading: Schoelkopf/Smola Chapter 7.4, 7.6, 7.8 Cristianini/Shawe-Taylor 3.1, 3.2, 3.3.2, 3.4

Outline

- Transform a linear learner into a non-linear learner
- Kernels can make high-dimensional spaces tractable
- Kernels can make non-vectorial data tractable

Non-Linear Problems

Problem:

- some tasks have non-linear structure
- no hyperplane is sufficiently accurate

How can SVMs learn non-linear classification rules?

Extending the Hypothesis Space

Idea: add more features

→ Learn linear rule in feature space.

Example:

The separating hyperplane in feature space is degree two polynomial in input space.

Example

- Input Space: $\vec{x} = (x_1, x_2)$ (2 attributes)
- Feature Space: $\Phi(\vec{x}) = (x_1^2, x_2^2, x_1, x_2, x_1 x_2, 1)$ (6 attributes)

Dual SVM Optimization Problem

Primal Optimization Problem

minimize:
$$P(\vec{w},b,\vec{\xi}) = \frac{1}{2} \, \vec{w} \cdot \vec{w} + C \, \sum_{i=1}^n \xi_i$$
 subject to:
$$\forall_{i=1}^n : y_i [\vec{w} \cdot \vec{x}_i + b] \geq 1 - \xi_i$$

$$\forall_{i=1}^n : \xi_i > 0$$

Dual Optimization Problem

maximize:
$$D(\vec{\alpha}) = \sum_{i=1}^n \alpha_i - \frac{1}{2} \sum_{i=1}^n \sum_{j=1}^n y_i y_j \alpha_i \alpha_j (\vec{x}_i \cdot \vec{x}_j)$$
 subject to:
$$\sum_{i=1}^n y_i \alpha_i = 0$$

$$\forall_{i=1}^n : 0 \leq \alpha_i \leq C$$

• Theorem: If w^* is the solution of the Primal and α^* is the solution of the Dual, then

$$\vec{w}^* = \sum_{i=1}^n \alpha_i^* y_i \vec{x}_i$$

Problem: Very many Parameters! Polynomials of degree *p* over *N* attributes in input space lead to O(N^p) attributes in feature space!

Solution [Boser et al.]: The dual OP depends only on inner products => Kernel Functions

$$K(\vec{a}, \vec{b}) = \Phi(\vec{a}) \cdot \Phi(\vec{b})$$

Example: For $\Phi(\vec{x}) = (x_1^2, x_2^2, \sqrt{2}x_1, \sqrt{2}x_2, \sqrt{2}x_1x_2, 1)$ calculating $K(\vec{a}, \vec{b}) = [\vec{a} \cdot \vec{b} + 1]^2$ computes inner product in feature space.

no need to represent feature space explicitly.

SVM with Kernel

Training:

maximize:
$$D(\vec{\alpha}) = \sum_{i=1}^n \alpha_i - \frac{1}{2} \sum_{i=1}^n \sum_{j=1}^n y_i y_j \alpha_i \alpha_j K(\vec{x}_i, \vec{x}_j)$$

subject to:
$$\sum_{i=1}^n y_i \alpha_i = 0$$

$$\forall_{i=1}^n : 0 \leq \alpha_i \leq C$$

Classification:
$$h(\vec{x}) = sign\left(\left[\sum_{i=1}^{n} \alpha_{i} y_{i} \Phi(\vec{x}_{i})\right] \cdot \Phi(\vec{x}) + b\right)$$
$$= sign\left(\sum_{i=1}^{n} \alpha_{i} y_{i} K(\vec{x}_{i}, \vec{x}) + b\right)$$

New hypotheses spaces through new Kernels:

- Linear: $K(\vec{a}, \vec{b}) = \vec{a} \cdot \vec{b}$
- Polynomial: $K(\vec{a}, \vec{b}) = [\vec{a} \cdot \vec{b} + 1]^d$
- Radial Basis Function: $K(\vec{a}, \vec{b}) = exp(-\gamma[\vec{a} \vec{b}]^2)$
- Sigmoid: $K(\vec{a}, \vec{b}) = tanh(\gamma[\vec{a} \cdot \vec{b}] + c)$

Examples of Kernels

Polynomial

$$K(\vec{a}, \vec{b}) = [\vec{a} \cdot \vec{b} + 1]^2$$

Radial Basis Function

$$K(\vec{a}, \vec{b}) = exp(-\gamma[\vec{a} - \vec{b}]^2)$$

What is a Valid Kernel?

Definition: Let X be a nonempty set. A function is a valid kernel in X if for all n and all $x_1, \ldots, x_n \in X$ it produces a Gram matrix

$$G_{ij} = K(x_i, x_j)$$

that is symmetric

$$G = G^T$$

and positive semi-definite

$$\forall \vec{\alpha} : \vec{\alpha}^T G \vec{\alpha} \geq \mathbf{0}$$

How to Construct Valid Kernels

Theorem: Let K_1 and K_2 be valid Kernels over $X \times X$, $X \subseteq \Re^N$, $\alpha \ge 0$, $0 \le \lambda \le 1$, f a real-valued function on X, $\phi: X \to \Re^m$ with a kernel K_3 over $\Re^m \times \Re^m$, and K a symmetric positive semi-definite matrix. Then the following functions are valid Kernels

$$K(x,z) = \lambda K_{1}(x,z) + (1-\lambda) K_{2}(x,z)$$

$$K(x,z) = \alpha K_{1}(x,z)$$

$$K(x,z) = K_{1}(x,z) K_{2}(x,z)$$

$$K(x,z) = f(x) f(z)$$

$$K(x,z) = K_{3}(\phi(x),\phi(z))$$

$$K(x,z) = x^{T} K z$$

Kernels for Discrete and Structured Data

Kernels for Sequences: Two sequences are similar, if the have many common and consecutive subsequences.

Example [Lodhi et al., 2000]: For $0 \le \lambda \le 1$ consider the following features space

	c-a	c-t	a-t	b-a	b-t	c-r	a-r	b-r
φ(cat)	λ^2	λ^3	λ^2	0	0	0	0	0
φ(car)	λ^2	0	0	0	0	λ^3	λ^2	0
φ(bat)	0	0	λ^2	λ^2	λ^3	0	0	0
φ(bar)	0	0	0	λ^2	0	0	λ^2	λ^3

=> K(car,cat) = λ^4 , efficient computation via dynamic programming

Kernels for Non-Vectorial Data

- Applications with Non-Vectorial Input Data
 - classify non-vectorial objects
 - Protein classification (x is string of amino acids)
 - Drug activity prediction (x is molecule structure)
 - Information extraction (x is sentence of words)
 - Etc.
- Applications with Non-Vectorial Output Data
 - → predict non-vectorial objects
 - Natural Language Parsing (y is parse tree)
 - Noun-Phrase Co-reference Resolution (y is clustering)
 - Search engines (y is ranking)
- Kernels can compute inner products efficiently!

Properties of SVMs with Kernels

Expressiveness

- SVMs with Kernel can represent any boolean function (for appropriate choice of kernel)
- SVMs with Kernel can represent any sufficiently "smooth" function to arbitrary accuracy (for appropriate choice of kernel)

Computational

- Objective function has no local optima (only one global)
- Independent of dimensionality of feature space

Design decisions

- Kernel type and parameters
- Value of C

SVMs for other Problems

- Multi-class Classification
 - [Schoelkopf/Smola Book, Section 7.6]
- Regression
 - [Schoelkopf/Smola Book, Section 1.6]
- Outlier Detection
 - D.M.J. Tax and R.P.W. Duin, "Support vector domain description", Pattern Recognition Letters, vol. 20, pp. 1191-1199, 1999b. 26
- Structural Prediction
 - B. Taskar, C. Guestrin, D. Koller Advances in Neural Information Processing Systems, 2003.
 - I. Tsochantaridis, T. Hofmann, T. Joachims, and Y. Altun, Support Vector Machine Learning for Interdependent and Structured Output Spaces, Proceedings of the International Conference on Machine Learning (ICML), 2004.