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Outline 

• Transform a linear learner into a non-linear 

learner 

• Kernels can make high-dimensional spaces 

tractable 

• Kernels can make non-vectorial data 

tractable 



Non-Linear Problems 

Problem: 

• some tasks have non-linear structure 

• no hyperplane is sufficiently accurate 

How can SVMs learn non-linear classification rules? 

 

 



Extending the Hypothesis 

Space 

Idea: add more features 

 

 

 

 
 

 Learn linear rule in feature space. 

Example: 

 

 

 

 

  The separating hyperplane in feature space is degree 
  two polynomial in input space. 



Example 

• Input Space:                     (2 attributes) 

• Feature Space: 

         (6 attributes)  



Dual SVM Optimization 

Problem 

• Primal Optimization Problem 

 

 

 

• Dual Optimization Problem 

 

 

 

 

• Theorem: If w* is the solution of the Primal and 
α* is the solution of the Dual, then 



Kernels 

Problem: Very many Parameters! Polynomials of 

degree p over N attributes in input space lead to 

O(Np) attributes in feature space! 

Solution [Boser et al.]: The dual OP depends only 

on inner products => Kernel Functions 

 

  

Example: For                                                                     

calculating                                  computes inner 

product in feature space. 

  no need to represent feature space explicitly. 

 



SVM with Kernel 

Training: 

 

 

 

 

Classification: 

 

 

 

New hypotheses spaces through new Kernels: 

• Linear: 

• Polynomial: 

• Radial Basis Function: 

• Sigmoid: 



Examples of Kernels 

Polynomial         Radial Basis Function 



What is a Valid Kernel? 

Definition: Let X be a nonempty set. A function 

is a valid kernel in X if for all n and all x1,…, xn 
2 X it produces a Gram matrix 

Gij = K(xi, xj) 

 that is symmetric 

G = GT 

 and positive semi-definite 

 



How to Construct Valid 

Kernels 

Theorem: Let K1 and K2 be valid Kernels over X £ 
X, X µ <N,  ≥ 0, 0 ≤  ≤ 1, f a real-valued 
function on X, :X! <m with a kernel K3 over <m 
£ <m, and K a symmetric positive semi-definite 
matrix. Then the following functions are valid 
Kernels 

K(x,z) =  K1(x,z) + (1-) K2(x,z) 

K(x,z) =  K1(x,z) 

K(x,z) = K1(x,z) K2(x,z) 

K(x,z) = f(x) f(z) 

K(x,z) = K3((x),(z)) 

K(x,z) = xT K z 



Kernels for Discrete and 

Structured Data 

Kernels for Sequences: Two sequences are similar, if 
the have many common and consecutive 
subsequences. 

Example [Lodhi et al., 2000]: For 0 ≤  ≤ 1 consider 
the following features space 

 

 

 

 

 
 

=> K(car,cat) = 4, efficient computation via dynamic 
 programming 

 

 

c-a c-t a-t b-a b-t c-r a-r b-r 

(cat) 2 3 2 0 0 0 0 0 

(car) 2 0 0 0 0 3 2 0 

(bat) 0 0 2 2 3 0 0 0 

(bar) 0 0 0 2 0 0 2 3 



Kernels for Non-Vectorial 

Data 

• Applications with Non-Vectorial Input Data  

 classify non-vectorial objects 

– Protein classification (x is string of amino acids) 

– Drug activity prediction (x is molecule structure) 

– Information extraction (x is sentence of words) 

– Etc. 

• Applications with Non-Vectorial Output Data 

 predict non-vectorial objects 

– Natural Language Parsing (y is parse tree) 

– Noun-Phrase Co-reference Resolution (y is clustering) 

– Search engines (y is ranking) 

 Kernels can compute inner products efficiently! 



Properties of SVMs with 

Kernels 

• Expressiveness 
– SVMs with Kernel can represent any boolean function 

(for appropriate choice of kernel) 

– SVMs with Kernel can represent any sufficiently 
“smooth” function to  arbitrary accuracy (for appropriate 
choice of kernel) 

• Computational 
– Objective function has no local optima (only one 

global) 

– Independent of dimensionality of feature space 

• Design decisions 
– Kernel type and parameters 

– Value of C 



SVMs for other Problems 

• Multi-class Classification 

– [Schoelkopf/Smola Book, Section 7.6] 

• Regression  

– [Schoelkopf/Smola Book, Section 1.6] 

• Outlier Detection  

– D.M.J. Tax and R.P.W. Duin, "Support vector domain 
description", Pattern Recognition Letters, vol. 20, pp. 1191-
1199, 1999b. 26 

• Structural Prediction 

– B. Taskar, C. Guestrin, D. Koller - Advances in Neural 
Information Processing Systems, 2003. 

– I. Tsochantaridis, T. Hofmann, T. Joachims, and Y. Altun, 
Support Vector Machine Learning for Interdependent and 
Structured Output Spaces, Proceedings of the International 
Conference on Machine Learning (ICML), 2004. 


