Support Vector Machines: Optimal Hyperplanes

CS4780/5780 – Machine Learning Fall 2011

Thorsten Joachims Cornell University

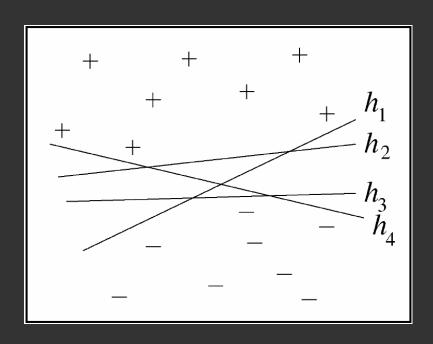
Reading: Schoelkopf/Smola Chapter 7.1-7.3, 7.5 (online)

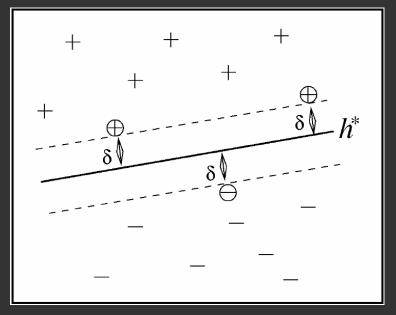
Outline

- Optimal hyperplanes and margins
- Hard-margin Support Vector Machine
- Primal optimization problem
- Soft-margin Support Vector Machine

Optimal Hyperplanes

- Assumption:
 - Training examples are linearly separable.

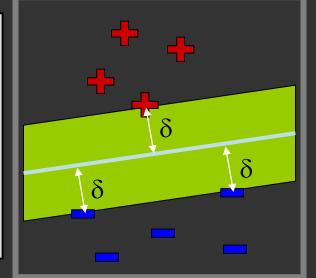




Hard-Margin Separation

Goal:

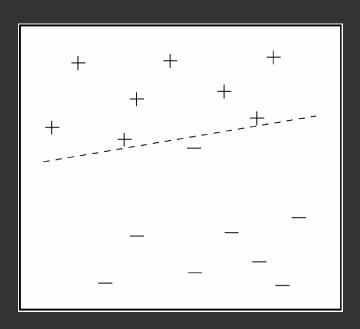
 Find hyperplane with the largest distance to the closest training examples.



- Support Vectors:
 - Examples with minimal distance (i.e. margin).

Non-Separable Training Data

- Limitations of hard-margin formulation
 - For some training data, there is no separating hyperplane.
 - Complete separation (i.e. zero training error) can lead to suboptimal prediction error.



Soft-Margin Separation

Idea: Maximize margin and minimize training error.

Hard-Margin OP (Primal): $\min_{\vec{w},b} \frac{1}{2} \vec{w} \cdot \vec{w}$ $s.t. \quad y_1(\vec{w} \cdot \vec{x}_1 + b) \ge 1$ $\dots \\ y_n(\vec{w} \cdot \vec{x}_n + b) \ge 1$

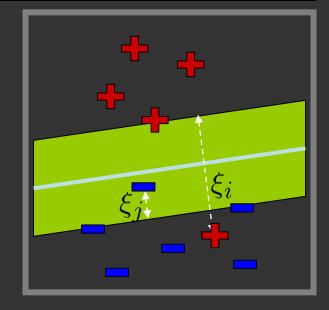
Soft-Margin OP (Primal):
$$\min_{\vec{w}, \vec{\xi}, b} \frac{1}{2} \vec{w} \cdot \vec{w} + C \sum_{i=1}^{n} \xi_i$$

$$s.t. \ y_1(\vec{w} \cdot \vec{x}_1 + b) \ge 1 - \xi_1 \land \xi_1 \ge 0$$

$$...$$

$$y_n(\vec{w} \cdot \vec{x}_n + b) \ge 1 - \xi_n \land \xi_n \ge 0$$

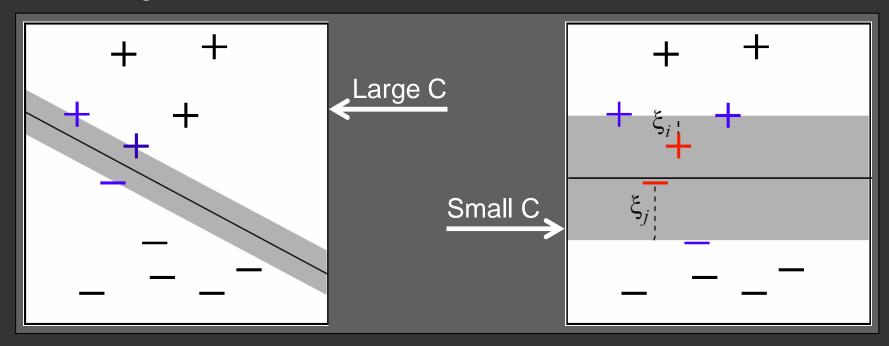
- Slack variable ξ_i measures by how much (x_i, y_i) fails to achieve margin δ
- $\Sigma \xi_i$ is upper bound on number of training errors
- *C* is a parameter that controls tradeoff between margin and training error.



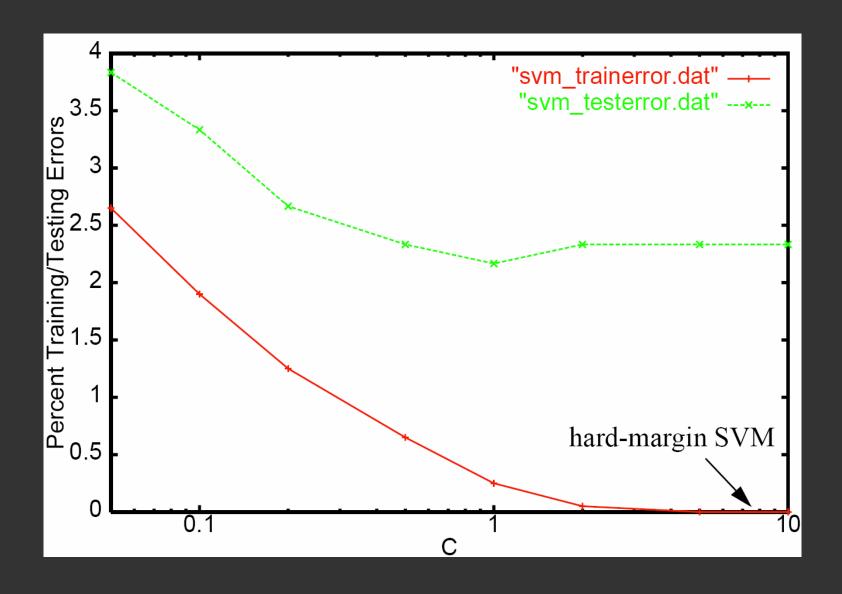
Controlling Soft-Margin Separation

- $\Sigma \xi_i$ is upper bound on number of training errors
- C is a parameter that controls trade-off between margin and training error.

Soft-Margin OP (Primal):
$$\min_{\vec{w}, \vec{\xi}, b} \frac{1}{2} \vec{w} \cdot \vec{w} + C \sum_{i=1}^{n} \xi_{i}$$
$$s.t. \ y_{1}(\vec{w} \cdot \vec{x}_{1} + b) \geq 1 - \xi_{1} \wedge \xi_{1} \geq 0$$
$$...$$
$$y_{n}(\vec{w} \cdot \vec{x}_{n} + b) \geq 1 - \xi_{n} \wedge \xi_{n} \geq 0$$



Example Reuters "acq": Varying C



Example: Margin in High-Dimension

Training	$ec{x}$							y
Sample S_{train}	x_{I}	x_2	x_3	x_4	x_5	x_6	x_7	
(\vec{x}_1, y_1)	1	0	0	1	0	0	0	1
(\vec{x}_2, y_2)	1	0	0	0	1	0	0	1
(\vec{x}_3, y_3)	0	1	0	0	0	1	0	-1
(\vec{x}_4, y_4)	0	1	0	0	0	0	1	-1
	$ec{w}$							b
	w_{I}	w_2	w_3	w_4	w_5	w_6	w_7	
Hyperplane 1	1	1	0	0	0	0	0	2
Hyperplane 2	0	0	0	1	1	-1	-1	0
Hyperplane 3	1	-1	1	0	0	0	0	0
Hyperplane 4	0.5	-0.5	0	0	0	0	0	0
Hyperplane 5	1	-1	0	0	0	0	0	0
Hyperplane 6	0.95	-0.95	0	0.05	0.05	-0.05	-0.05	0