

Linear Classifiers and Perceptrons

CS4780/5780 – Machine Learning Fall 2011

> Thorsten Joachims Cornell University

Reading: Mitchell Chapter 4.4-4.4.2 & Chapter 7.5 Cristianini/Shawe-Taylor Chapter 2-2.1.1

- Linear classification rules
- Perceptron learning algorithm
- Mistake-bound model
- Perceptron mistake bound

	viagra	learning	the	dating	nigeria	spam?
$\vec{x}_1 = ($	1	0	1	0	0)	$y_1 = -1$
$\vec{x}_2 = ($	0	1	1	0	0)	$y_2 = +1$
$\vec{x}_3 = ($	0	0	0	0	1)	$y_3 = -1$

• Instance Space X:

Cornell University

- Feature vector of word occurrences => binary features
- N features (N typically > 50000)
- Target Concept c:

- Spam (-1) / Ham (+1)

Cornell University Linear Classification Rules

- Hypotheses of the form
 - unbiased: $h_{\vec{w}}(\vec{x}) = \begin{cases} 1 & w_1 x_1 + ... + w_N x_N > 0 \\ -1 & else \end{cases}$
 - biased: $h_{\vec{w},b}(\vec{x}) = \begin{cases} 1 & w_1x_1 + \dots + w_Nx_N + b > 0 \\ -1 & else \end{cases}$
 - Parameter vector *w*, scalar *b*
- Hypothesis space H
 - $-H_{unbiased} = \{h_{\vec{w}} : \vec{w} \in \Re^N\}$
 - $-H_{biased} = \{h_{\vec{w},b} : \vec{w} \in \Re^N b \in \Re\}$
- Notation
 - $w_1 x_1 + \dots + w_N x_N = \vec{w} \cdot \vec{x} \text{ and } sign(a) = \begin{cases} 1 & a > 0 \\ -1 & else \end{cases}$
 - $-h_{\vec{w}}(\vec{x}) = sign(\vec{w} \cdot \vec{x})$
 - $-h_{\vec{w},b}(\vec{x}) = sign(\vec{w} \cdot \vec{x} + b)$

(Online) Perceptron Algorithm

- Input: $S = ((\vec{x}_1, y_1), ..., (\vec{x}_n, y_n)), \ \vec{x}_i \in \Re^N, \ y_i \in \{-1, 1\}$
- Algorithm:
 - $\vec{w}_0 = \vec{0}, \ k = 0$
 - FOR i=1 TO n* IF $y_i(\vec{w}_k \cdot \vec{x}_i) \leq 0$ ### makes mistake
 - $\cdot \ \vec{w}_{k+1} = \vec{w}_k + y_i \vec{x}_i$
 - $\cdot k = k + 1$
 - * ENDIF
 - ENDFOR
- Output: \vec{w}_k

Definition: For a linear classifier h_w , the margin δ of an example (\vec{x}, y) with $\vec{x} \in \Re^N$ and $y \in \{-1, +1\}$ is $\delta = y(\vec{w} \cdot \vec{x})$.

Definition: The margin is called geometric margin, if $||\vec{w}|| = 1$. Otherwise, functional margin.

Definition: The (hard) margin of an unbiased linear classifier $h_{\vec{w}}$ on a sample S is $\delta = \min_{(\vec{x},y)\in S} y(\vec{w} \cdot \vec{x})$.

Definition: The (hard) margin of an unbiased linear classifier $h_{\vec{w}}$ on a task P(X, Y) is

 $\delta = inf_{S \sim P(X,Y)} min_{(\vec{x},y) \in S} y(\vec{w} \cdot \vec{x}).$

Theorem: For any sequence of training examples $S = ((x_1, y_1), \dots, (x_n, y_n))$ with $R=max ||x_i||,$ if there exists a weight vector w_{opt} with ||w_{opt}||=1 and $y_i (w_{opt} \cdot x_i) \ge \delta$ for all $1 \le i \le n$, then the Perceptron makes at most R^2 / δ^2 errors.

Input: $S = ((\vec{x}_1, y_1), ..., (\vec{x}_n, y_n)), \ \vec{x}_i \in \Re^N$, $y_i \in \{-1, 1\}$, $I \in [1, 2, ..]$

Algorithm:

•
$$\vec{w}_0 = \vec{0}, \ k = 0$$

• repeat

- FOR
$$i=1$$
 TO n
* IF $y_i(\vec{w}_k \cdot \vec{x}_i) \le 0 \#\#\#$ makes mistake
 $\cdot \vec{w}_{k+1} = \vec{w}_k + y_i \vec{x}_i$
 $\cdot k = k + 1$
* ENDIF
- ENDFOR

• until I iterations reached

Example: Reuters Text Classification

