

CS4780/5780 - Machine Learning

Fall 2011

Thorsten Joachims
Cornell University
Department of Computer Science

Outline of Today

- Who we are?
 - Prof: Thorsten Joachims
 - TAs: Karthik Raman, Chenhao Tan, Adith
 Swaminathan
 - Consultants: Mevlana Gemici, Anthony Chang, Nic Williamson,
 Heran Yang, Boiar Qin
- What is learning?
 - Why should a computer be able to learn?
 - Examples of machine learning.
 - What it takes to build a learning system?
- Syllabus
- Administrivia

Cornell University (One) Definition of Learning

Definition [Mitchell]:

- A computer program is said to learn from
 - experience E with respect to some class of
 - tasks T and
 - performance measure P,
- if its performance at tasks in T, as measured by P,
- improves with experience E.

Syllabus

- Concept Learning: Hypothesis space, version space
- Instance-Based Learning: k-nearest neighbor, collaborative filtering
- Decision Trees: TDIDT, attribute selection, pruning and overfitting
- ML Experimentation: hypothesis tests, resampling estimates
- Linear Rules: Perceptron, duality, mistake bound
- Support Vector Machines: optimal hyperplane, kernels, stability
- Generative Models : Naïve Bayes, linear discriminant analysis
- Hidden Markov Models : probabilistic model, estimation, Viterbi
- Structured Output Prediction: predicting sequences, rankings, etc.
- Learning Theory: PAC learning, mistake bounds
- Clustering: HAC Clustering, k-means, mixture of Gaussians

Textbook and Course Material

Main Textbooks

- Main: Tom Mitchell, "Machine Learning", McGraw Hill, 1997.
- Cristianini, Shawe-Taylor, "Introduction to Support Vector Machines", Cambridge University Press, 2000. (online)
- Schoelkopf, Smola, "Learning with Kernels", MIT Press, 2001. (online)
- Course pack (one chapter)
- Additional References (optional)
 - Ethem Alpaydin, "Introduction to Machine Learning", MIT Press, 2004.
 - See other references on course web page.

Course Notes

- Slides available on course homepage
- Material on blackboard

Pre-Requisites and Related Courses

Pre-Requisites

- Programming skills (e.g. CS 2110)
- Basic linear algebra (e.g. MATH2940)
- Basic probability theory (e.g. CS 2800)
- → Short exam to test prereqs

Related Courses

- CS4700: Foundations of Artificial Intelligence
- CS4758: Robot Learning
- CS4300: Information Retrieval
- CS6780: Advanced Machine Learning
- CS6784: Advanced Topics in Machine Learning
- CS6740: Advanced Language Technologies

Homwork Assignments

Assignments

- 5 homework assignments
- Some problem sets, some programming and experiments

Policies

- Assignments are due at the beginning of class on the due date in hardcopy. Code must be submitted via CMS by the same deadline.
- Assignments turned in late will drop 5 points for each period of 24 hours for which the assignment is late.
- Everybody had 3 "free" late days. Use them wisely.
- No assignments will be accepted after the solutions have been made available (typically 3 days after deadline).
- Typically collaboration of two students (see each assignment for detailed collaboration policy).
- We run automatic cheating detection. Must state all sources of material used in assignments or project. Please review Cornell Academic Integrity Policy!

Exams and Quizzes

In-class Quizzes

- A few per semester
- No longer than 5 minutes
- You can miss one of them

Exams

- Two Prelim exams
- In class
- No final exam

Final Project

Organization

- Self-defined topic related to your interests and research
- Groups of 3-4 students
- Each group has TA as advisor

Deliverables

- Project proposal (~ 2 weeks after fall break)
- Meetings with TA to discuss progress
- Short presentation in class (last week of classes)
- Project report (~ exam period)

Grading

Deliverables

– 2 Prelim Exams (40% of Grade)

Final Project (15% of Grade)

Homeworks (~5 assignments) (35% of Grade)

– Quizzes (in class) (5% of Grade)

– PreReq Exam (2% of Grade)

– Participation (3% of Grade)

Outlier elimination

 For homeworks and quizzes, the lowest grade is replaced by the second lowest grade.

How to Get in Touch

- Online
 - http://www.cs.cornell.edu/Courses/cs4780/2011fa/
 - Piazza forum
 - Videonote
- Email Addresses
 - Thorsten Joachims: tj@cs.cornell.edu
 - Karthik Raman, <u>karthik@cs.cornell.edu</u>
 - Chenhao Tan, chenhao@cs.cornell.edu
 - Adith Swaminathan, <u>adith@cs.cornell.edu</u>
 - Mevlana Gemici, Anthony Chang, Nic Williamson, Heran Yang, Boiar Qin
- Office Hours
 - Thorsten Joachims:
 - Tuesdays 2:40pm 3:30pm, 4153 Upson Hall
 - Other office hours:
 - TBD