
CS 4758/6758 Robot Learning: Homework 3

Due March 14 at 4:00 PM (in class)

1 Kalman Filters: Multiple Sensors (25 points)
Suppose we have a continuous system with state x ∈ <N . The state at time k is determined by the equation:

xk+1 = xk + wk+1 where wk+1 ∼ N(0, Q)

Now we have two sensors zk and yk. One sensor gives data at k = 1, 3, 5, . . . , and the other sensor gives data
at k = 2, 4, 6,

zk = xk + vk where vk ∼ N(0, R1)

yk = xk + ek where ek ∼ N(0, R2)

Derive the time and measurement update equations for this situation.

2 Kalman Filter Implementation (50 points)
You are designing a ground robot that will operate autonomously and use a Kalman filter for localization.
The robot moves according to xk = Axk−1 + wk , wk ∼ N (0, Q) and makes measurements zk = Hxk + vk,
vk ∼ N (0, R). You can choose between three chassis/dynamics and two sensors arrays but need to decide
which pairing is best. Your options are:

Dynamics
(a) : A = 1.01

[
cos .1 − sin .1
sin .1 cos .1

]
Q =

[
1 2
2 4

]

(b) : A =
[

.99 0
0 .99

]
Q =

[
.4 −.2
−.2 .4

]

(c) : A =
[

1.01 0
0 1.01

]
Q =

[
.1 −.05
−.05 .25

]
Sensors

(d) : H =
[

1 1
1 1

]
R =

[
.1 0
0 .1

]

(e) : H =

 1 .5
.5 −1
1 1

 R =

 1 0 −.5
0 2 .5
−.5 .5 1


(a) The expected squared error of the Kalman filter estimate x̂k is given by E

[
(xk − x̂k)T (xk − x̂k)

]
.

Express this quantity in terms of the estimate covariance Pk. (10 points)

1

(b) For each of the six combinations of dynamics and sensors, plot the expected squared error with respect
to time. Assume you know the robot’s starting position; that is, P0 = 0. Attach the code you used for your
calculations. (20 points)

(c) If you only plan on operating the robot for t < 50, which combination has the lowest error? What is
its expected error at t = 50? (5 points)

(d) If you plan to operate the robot indefinitely, which combination is best? What is its expected error as
t→∞? (5 points)

(e) If the robot instead starts from a completely unknown position, how do your answers to (c) and (d)
change? Repeat them for this case. (10 points)

3 Pose classification (25 points)
For this question, you will use skeleton tracking data from Kinect to classify human poses. This data was
taken from the NiTE skeleton tracking software. Refer to http://pr.cs.cornell.edu/humanactivities/
data.php for more information on the data format. Link indices are as follows:

Joint number -> Joint name
1 -> HEAD
2 -> NECK
3 -> TORSO
4 -> LEFT_SHOULDER
5 -> LEFT_ELBOW
6 -> RIGHT_SHOULDER
7 -> RIGHT_ELBOW
8 -> LEFT_HIP
9 -> LEFT_KNEE

10 -> RIGHT_HIP
11 -> RIGHT_KNEE
12 -> LEFT_HAND
13 -> RIGHT_HAND
14 -> LEFT_FOOT
15 -> RIGHT_FOOT

The attached setupLinkInds script will populate these indices as global variables in your MATLAB
workspace, and should be run before running any of the other provided functions.

The data is given in the form of a .mat file with the following fields (for N different skeletons):

P Nx15x3 Points for each joint, in X,Y,Z world-space coords
R Nx15x3x3 Rotation matrices for each joint, relative to world-space
person Nx1 Person index, from 1 to 4, for each case
class Nx1 Pose class index, from 1 to 5
links 14x2 Pairs of joint indices with links between them, used for visualization

The poses are:
1. Chopping food

2. Holding a cup

3. Opening a pill bottle

4. Talking on the phone

5. Writing on a whiteboard

2

(a) Use the provided showSkelFromInd function to plot one skeleton for each pose class and attach these
plots. Use the links variable provided in poseData.mat

(b) For this part, you will complete trainPoseClassifiers.m and eval/confToPrecRec.m to train multi-
nomial logistic classifiers for a series of cross-validation splits of the given pose data. To get started, read
trainPoseClassifiers.m and make sure you understand what it’s doing.

For this problem, we want to have four different per-person cross-validation splits of the data. In each
split, the data from a different subject is held out as test data, and the data from the others is used for
training. Methods such as this are a good way of evaluating the generalization performance of a feature
set/learning algorithm.

The starter code in trainPoseClassifiers.m is mostly complete, but you need to add code to properly
split the pose data into training and testing sets as described above. The splitData function will probably
be useful for this.

For evaluation, we want to look at the confusion,precision, and recall for each split of the data. Confusion
will be given in the form of a confusion matrix – for N classes, this will be an NxN matrix C such that Ci,j

is the number of cases which are actually in class i, but were predicted to be in class j. Precision is defined
as the fraction of cases which are predicted to have a given class which actually belong to that class. Recall
is defined as the fraction of cases of a given ground-truth class which are correctly classified as belonging to
that class.

Code to evaluate a set of weights B learned by mnrfit is provided in eval/evaluateMNRClass. This
code will use the given weights and data to compute predictions, and produce a confusion matrix comparing
the predicted and ground-truth classes. However, the eval/confToPrecRec function, which is supposed to
compute precision and recall given a confusion matrix, is currently a stub, and you will have to implement
this function to properly compute precision and recall.

Fix the code in the indicated locations in trainPoseClassifiers.m and eval/confToPrecRec.m, then
use trainPoseClassifiers.m to train classifiers and report performance for each cross-validation split.
Either fill in the table on the next page, or produce a similar table reporting precision and recall for each
split and class, as well as split-wise and class-wise averages.

What do you notice about the split-wise averages? Does one split significantly underperform the others?
Why do you think this is? Hint: take a look at some poses for each person

3

Results table for problem 3B
Chopping Hold cup Open bottle Use phone Whiteboard Average

Test person Prec. Rec. Prec. Rec. Prec. Rec. Prec. Rec. Prec. Rec. Prec. Rec.
1
2
3
4

Average

4

