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1 Supervised Learning

Sometimes we have a number of sensors (e.g., with output x; and x2) and we want to
combine them to get a better estimate (say y). One method is to combine them linearly.
Le.,

y = 01z1 + 022 + 0 (1)

However, we do not know what weights #; we should use. In this setting we can use linear
regression, where we are given a training set to learn the weights from.

1.1 Notation

To establish notation for future use, well use 2V to denote the “input” variables (living
area in this example), also called input features, and y to denote the “output” or target
variable that we are trying to predict. A pair (2, 3) is called a training example, and the
dataset that well be using to learn—a list of m training examples {(z,y®);i = 1,...,m}—is
called a training set. Note that the superscript “(i)” in the notation is simply an index into
the training set, and has nothing to do with exponentiation.

2 Linear Regression

To perform supervised learning, we must decide how were going to rep- resent func-
tions/hypotheses h in a computer. As an initial choice, lets say we decide to approximate y
as a linear function of x:

hg(l’) = 90 + 91%’1 + 921’2

Here, the 0;s are the parameters (also called weights) parameterizing the space of linear
functions mapping from X to Y .

To simplify our notation, we also introduce the convention of letting zo = 1 (this is the
intercept term), so that

h(xz) = Zele =0, (2)

where on the right-hand side above we are viewing 6 and x both as vectors, and here n is
the number of input variables (not counting z ). Now, given a training set, how do we pick,
or learn, the parameters 67 One reasonable method seems to be to make h(x) close to y ,
at least for the training examples we have. To formalize this, we will dene a function that
measures, for each value of the s, how close the h(x")s are to the corresponding y¥’s. We

dene the cost function:
1 & , .
— @)y _ ,,0)\2
7(6) = 5 3 (o) — y9) )

i=1



If youve seen linear regression before, you may recognize this as the familiar least-squares
cost function that gives rise to the ordinary least squares regression model. Whether or not
you have seen it previously, lets keep going, and well eventually show this to be a special
case of a much broader family of algorithms.

2.1 Gradient Descent
One way to obtain the optimal value of 8 is to use gradient descent. It starts with some
initial 6, and repeatedly performs the update:

0

This update is simultaneously performed for all values of 7 =0, ..., n.

2.2 Normal equations
Another method to obtain the parameters is by using normal equations. The closed form
solution is given by:
0= (XTX)'XxTy (5)

where X is a matrix containing all the features, with each row a datapoint in the tranining
set, and y is the vectorized form of the training set labels.
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